IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0127825.html
   My bibliography  Save this article

Influences of Environmental Factors on Leaf Morphology of Chinese Jujubes

Author

Listed:
  • Xiaopeng Li
  • Yupeng Li
  • Zhong Zhang
  • Xingang Li

Abstract

Rainfall and temperature are the primary limiting factors for optimum quality and yield of cultivated jujube (Ziziphus jujuba Mill.). Adaptation to arid and cool environments has been and remains an important goal of many jujube improvement programs. This study summarized the survey results of 116 Chinese jujube varieties grown at 33 sites in China. The objective was to identify the environmental factors that influence leaf morphology, and the implications for breeding and introduction of new jujube varieties. Jujube leaf morphological traits were evaluated for their potential relationships with mean annual temperature (MAT) and mean annual precipitation (MAP). The results showed that many leaf morphological traits had a strong linear relationship with local precipitation and temperature. Longer veins per unit area (VLA) and reduced leaf area and leaf perimeter were typical of arid areas. VLA was inversely related to MAT and MAP at the centers of origin of jujube. There was a positive relationship between leaf shape (perimeter2/area) and both MAT and MAP. These results indicated that leaf vein traits of Chinese jujubes might have resulted from their adaptation to environmental factors in the course of long-term evolution. Principal component analysis allocated the 116 jujube varieties to three different groups, differentiated on the basis of morphological and physiological leaf characteristics. Jujube varieties from the Hebei, Shandong, Henan, southern Shanxi and central Shaanxi provinces were closely related, as were varieties from northwest Shanxi and northeast Shaanxi provinces, and varieties from the Gansu and Ningxia provinces. These close relationships were partially attributed to the frequent exchanges of varieties within each group. Leaf venation characteristics might be used as reference indices for jujube variety introduction between different locations.

Suggested Citation

  • Xiaopeng Li & Yupeng Li & Zhong Zhang & Xingang Li, 2015. "Influences of Environmental Factors on Leaf Morphology of Chinese Jujubes," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
  • Handle: RePEc:plo:pone00:0127825
    DOI: 10.1371/journal.pone.0127825
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127825
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0127825&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0127825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cui, Ningbo & Du, Taisheng & Li, Fusheng & Tong, Ling & Kang, Shaozhong & Wang, Mixia & Liu, Xiaozhi & Li, Zhijun, 2009. "Response of vegetative growth and fruit development to regulated deficit irrigation at different growth stages of pear-jujube tree," Agricultural Water Management, Elsevier, vol. 96(8), pages 1237-1246, August.
    2. Cui, Ningbo & Du, Taisheng & Kang, Shaozhong & Li, Fusheng & Zhang, Jianhua & Wang, Mixia & Li, Zhijun, 2008. "Regulated deficit irrigation improved fruit quality and water use efficiency of pear-jujube trees," Agricultural Water Management, Elsevier, vol. 95(4), pages 489-497, April.
    3. Lawren Sack & Christine Scoffoni & Athena D. McKown & Kristen Frole & Michael Rawls & J. Christopher Havran & Huy Tran & Thusuong Tran, 2012. "Developmentally based scaling of leaf venation architecture explains global ecological patterns," Nature Communications, Nature, vol. 3(1), pages 1-10, January.
    4. Ma, Fusheng & Kang, Shaozhong & Li, Fusheng & Zhang, Jianhua & Du, Taisheng & Hu, Xiaotao & Wang, Mixia, 2007. "Effect of water deficit in different growth stages on stem sap flux of greenhouse grown pear-jujube tree," Agricultural Water Management, Elsevier, vol. 90(3), pages 190-196, June.
    5. Cui, Ningbo & Du, Taisheng & Kang, Shaozhong & Li, Fusheng & Hu, Xiaotao & Wang, Mixia & Li, Zhijun, 2009. "Relationship between stable carbon isotope discrimination and water use efficiency under regulated deficit irrigation of pear-jujube tree," Agricultural Water Management, Elsevier, vol. 96(11), pages 1615-1622, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Yu & Cui, Ningbo & Du, Taisheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu, 2017. "Response of sap flux and evapotranspiration to deficit irrigation of greenhouse pear-jujube trees in semi-arid northwest China," Agricultural Water Management, Elsevier, vol. 194(C), pages 1-12.
    2. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    3. Liao, Yang & Cao, Hong-Xia & Xue, Wen-Kai & Liu, Xing, 2021. "Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Janssens, Pieter & Deckers, Tom & Elsen, Frank & Elsen, Annemie & Schoofs, Hilde & Verjans, Wim & Vandendriessche, Hilde, 2011. "Sensitivity of root pruned ‘Conference’ pear to water deficit in a temperate climate," Agricultural Water Management, Elsevier, vol. 99(1), pages 58-66.
    5. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).
    6. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    7. Tong, Xuanyue & Wu, Pute & Liu, Xufei & Zhang, Lin & Zhou, Wei & Wang, Zhaoguo, 2022. "A global meta-analysis of fruit tree yield and water use efficiency under deficit irrigation," Agricultural Water Management, Elsevier, vol. 260(C).
    8. Chengkun Wang & Nannan Zhang & Mingzhe Li & Li Li & Tiecheng Bai, 2022. "Pear Tree Growth Simulation and Soil Moisture Assessment Considering Pruning," Agriculture, MDPI, vol. 12(10), pages 1-26, October.
    9. Cui, Ningbo & Du, Taisheng & Li, Fusheng & Tong, Ling & Kang, Shaozhong & Wang, Mixia & Liu, Xiaozhi & Li, Zhijun, 2009. "Response of vegetative growth and fruit development to regulated deficit irrigation at different growth stages of pear-jujube tree," Agricultural Water Management, Elsevier, vol. 96(8), pages 1237-1246, August.
    10. Wen, Shenglin & Cui, Ningbo & Gong, Daozhi & Liu, Chunwei & Xing, Liwen & Wu, Zongjun & Wang, Zhihui & Wang, Jiaxin, 2023. "A global meta-analysis of yield and water productivity of woody, herbaceous and vine fruits under deficit irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Zheng, Shunsheng & Cui, Ningbo & Gong, Daozhi & Wang, Yaosheng & Hu, Xiaotao & Feng, Yu & Zhang, Yixuan, 2020. "Relationship between stable carbon isotope discrimination and water use efficiency under deficit drip irrigation of kiwifruit in the humid areas of South China," Agricultural Water Management, Elsevier, vol. 240(C).
    12. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    13. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    14. Henrik Ronellenfitsch & Jana Lasser & Douglas C Daly & Eleni Katifori, 2015. "Topological Phenotypes Constitute a New Dimension in the Phenotypic Space of Leaf Venation Networks," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-12, December.
    15. Chen, Dianyu & Wang, Youke & Liu, Shouyang & Wei, Xinguang & Wang, Xing, 2014. "Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 136(C), pages 23-33.
    16. Gucci, Riccardo & Caruso, Giovanni & Gennai, Clizia & Esposto, Sonia & Urbani, Stefania & Servili, Maurizio, 2019. "Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development," Agricultural Water Management, Elsevier, vol. 212(C), pages 88-98.
    17. Jingyi Zhang & Jiaxin Liu & Yaqi Chen & Xiaochun Feng & Zilai Sun, 2021. "Knowledge Mapping of Machine Learning Approaches Applied in Agricultural Management—A Scientometric Review with CiteSpace," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    18. Wei, Zhenhua & Du, Taisheng & Zhang, Juan & Xu, Shujun & Cambre, Paul J. & Davies, William J., 2016. "Carbon isotope discrimination shows a higher water use efficiency under alternate partial root-zone irrigation of field-grown tomato," Agricultural Water Management, Elsevier, vol. 165(C), pages 33-43.
    19. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    20. Al-Ghobari, Hussein M. & Dewidar, Ahmed Z., 2018. "Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions," Agricultural Water Management, Elsevier, vol. 209(C), pages 55-61.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0127825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.