IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0127533.html
   My bibliography  Save this article

Transnational Corporations as ‘Keystone Actors’ in Marine Ecosystems

Author

Listed:
  • Henrik Österblom
  • Jean-Baptiste Jouffray
  • Carl Folke
  • Beatrice Crona
  • Max Troell
  • Andrew Merrie
  • Johan Rockström

Abstract

Keystone species have a disproportionate influence on the structure and function of ecosystems. Here we analyze whether a keystone-like pattern can be observed in the relationship between transnational corporations and marine ecosystems globally. We show how thirteen corporations control 11-16% of the global marine catch (9-13 million tons) and 19-40% of the largest and most valuable stocks, including species that play important roles in their respective ecosystem. They dominate all segments of seafood production, operate through an extensive global network of subsidiaries and are profoundly involved in fisheries and aquaculture decision-making. Based on our findings, we define these companies as keystone actors of the Anthropocene. The phenomenon of keystone actors represents an increasingly important feature of the human-dominated world. Sustainable leadership by keystone actors could result in cascading effects throughout the entire seafood industry and enable a critical transition towards improved management of marine living resources and ecosystems.

Suggested Citation

  • Henrik Österblom & Jean-Baptiste Jouffray & Carl Folke & Beatrice Crona & Max Troell & Andrew Merrie & Johan Rockström, 2015. "Transnational Corporations as ‘Keystone Actors’ in Marine Ecosystems," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
  • Handle: RePEc:plo:pone00:0127533
    DOI: 10.1371/journal.pone.0127533
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127533
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0127533&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0127533?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pauly, D. & Tsukayama, I. (eds.), 1987. "The Peruvian anchoveta and its upwelling ecosystem: three decades of change," Monographs, The WorldFish Center, number 663, April.
    2. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    3. Richard Heede, 2014. "Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010," Climatic Change, Springer, vol. 122(1), pages 229-241, January.
    4. Gilman, Eric L., 2011. "Bycatch governance and best practice mitigation technology in global tuna fisheries," Marine Policy, Elsevier, vol. 35(5), pages 590-609, September.
    5. Elinor Ostrom & Roy Gardner, 1993. "Coping with Asymmetries in the Commons: Self-Governing Irrigation Systems Can Work," Journal of Economic Perspectives, American Economic Association, vol. 7(4), pages 93-112, Fall.
    6. Stefania Vitali & James B Glattfelder & Stefano Battiston, 2011. "The Network of Global Corporate Control," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-6, October.
    7. Sumaila, Ussif Rashid & Vasconcellos, Marcelo, 2000. "Simulation of ecological and economic impacts of distant water fleets on Namibian fisheries," Ecological Economics, Elsevier, vol. 32(3), pages 457-464, March.
    8. Rosamond L. Naylor & Rebecca J. Goldburg & Jurgenne H. Primavera & Nils Kautsky & Malcolm C. M. Beveridge & Jason Clay & Carl Folke & Jane Lubchenco & Harold Mooney & Max Troell, 2000. "Effect of aquaculture on world fish supplies," Nature, Nature, vol. 405(6790), pages 1017-1024, June.
    9. Unknown, 1987. "The Peruvian anchoveta and its upwelling ecosystem: three decades of change," Technical Reports 44683, Worldfish Center.
    10. Daniel Pauly & Villy Christensen & Sylvie Guénette & Tony J. Pitcher & U. Rashid Sumaila & Carl J. Walters & R. Watson & Dirk Zeller, 2002. "Towards sustainability in world fisheries," Nature, Nature, vol. 418(6898), pages 689-695, August.
    11. Jennifer Jacquet & David Frank & Christopher Schlottmann, 2013. "Asymmetrical Contributions to the Tragedy of the Commons and Some Implications for Conservation," Sustainability, MDPI, vol. 5(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongni Han & Deyong Yu & Jiangxiao Qiu, 2023. "Assessing coupling interactions in a safe and just operating space for regional sustainability," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Jacob Hileman & Ivan Kallstenius & Tiina Häyhä & Celinda Palm & Sarah Cornell, 2020. "Keystone actors do not act alone: A business ecosystem perspective on sustainability in the global clothing industry," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacob Hileman & Ivan Kallstenius & Tiina Häyhä & Celinda Palm & Sarah Cornell, 2020. "Keystone actors do not act alone: A business ecosystem perspective on sustainability in the global clothing industry," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-17, October.
    2. Michele Baggio, 2016. "Optimal Fishery Management with Regime Shifts: An Assessment of Harvesting Strategies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 465-492, July.
    3. Baggio, Michele & Perrings, Charles, 2015. "Modeling adaptation in multi-state resource systems," Ecological Economics, Elsevier, vol. 116(C), pages 378-386.
    4. Christensen, Villy & de la Puente, Santiago & Sueiro, Juan Carlos & Steenbeek, Jeroen & Majluf, Patricia, 2014. "Valuing seafood: The Peruvian fisheries sector," Marine Policy, Elsevier, vol. 44(C), pages 302-311.
    5. Libralato, Simone & Solidoro, Cosimo, 2008. "A bioenergetic growth model for comparing Sparus aurata's feeding experiments," Ecological Modelling, Elsevier, vol. 214(2), pages 325-337.
    6. Gunnar Brandt & Agostino Merico & Björn Vollan & Achim Schlüter, 2012. "Human Adaptive Behavior in Common Pool Resource Systems," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-9, December.
    7. Jennifer Jacquet & David Frank & Christopher Schlottmann, 2013. "Asymmetrical Contributions to the Tragedy of the Commons and Some Implications for Conservation," Sustainability, MDPI, vol. 5(3), pages 1-13, March.
    8. Pauly, D. & Martosubroto, P. (eds.), 1996. "Baseline studies of biodiversity: the fish resources of Western Indonesia," Monographs, The WorldFish Center, number 10988, April.
    9. Xu, Yi & Chai, Fei & Rose, Kenneth A. & Ñiquen C., Miguel & Chavez, Francisco P., 2013. "Environmental influences on the interannual variation and spatial distribution of Peruvian anchovy (Engraulis ringens) population dynamics from 1991 to 2007: A three-dimensional modeling study," Ecological Modelling, Elsevier, vol. 264(C), pages 64-82.
    10. Milena Arias Schreiber & Miguel Ñiquen & Marilú Bouchon, 2011. "Coping Strategies to Deal with Environmental Variability and Extreme Climatic Events in the Peruvian Anchovy Fishery," Sustainability, MDPI, vol. 3(6), pages 1-24, June.
    11. Heikkurinen, Pasi & Ruuska, Toni & Wilén, Kristoffer & Ulvila, Marko, 2019. "The Anthropocene exit: Reconciling discursive tensions on the new geological epoch," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    12. Ahmed, M., 1991. "A model to determine benefits obtainable from the management of riverine fisheries of Bangladesh," Monographs, The WorldFish Center, number 7471, April.
    13. Hill Cruz, Mariana & Frenger, Ivy & Getzlaff, Julia & Kriest, Iris & Xue, Tianfei & Shin, Yunne-Jai, 2022. "Understanding the drivers of fish variability in an end-to-end model of the Northern Humboldt Current System," Ecological Modelling, Elsevier, vol. 472(C).
    14. Ahmed, Mahfuzuddin, 1991. "A model to determine benefits obtainable from the management of riverine fisheries of Bangladesh," Technical Reports 44726, Worldfish Center.
    15. Cem Iskender Aydin & Begum Ozkaynak & Beatriz Rodríguez-Labajos & Taylan Yenilmez, 2017. "Network effects in environmental justice struggles: An investigation of conflicts between mining companies and civil society organizations from a network perspective," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-20, July.
    16. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    17. Cardenas, Juan Camilo & Rodriguez, Luz Angela & Johnson, Nancy, 2011. "Collective action for watershed management: field experiments in Colombia and Kenya," Environment and Development Economics, Cambridge University Press, vol. 16(3), pages 275-303, June.
    18. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    19. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    20. Robert Roßner & Dimitrios Zikos, 2018. "The Role of Homogeneity and Heterogeneity Among Resource Users on Water Governance: Lessons Learnt from an Economic Field Experiment on Irrigation in Uzbekistan," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-30, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0127533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.