IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0126130.html
   My bibliography  Save this article

Combination Patterns of Major R Genes Determine the Level of Resistance to the M. oryzae in Rice (Oryza sativa L.)

Author

Listed:
  • Yunyu Wu
  • Ning Xiao
  • Ling Yu
  • Cunhong Pan
  • Yuhong Li
  • Xiaoxiang Zhang
  • Guangqing Liu
  • Zhengyuan Dai
  • Xuebiao Pan
  • Aihong Li

Abstract

Rice blast caused by Magnaporthe oryzae is the most devastating disease of rice and poses a serious threat to world food security. In this study, the distribution and effectiveness of 18 R genes in 277 accessions were investigated based on pathogenicity assays and molecular markers. The results showed that most of the accessions exhibited some degree of resistance (resistance frequency, RF >50%). Accordingly, most of the accessions were observed to harbor two or more R genes, and the number of R genes harbored in accessions was significantly positively correlated with RF. Some R genes were demonstrated to be specifically distributed in the genomes of rice sub-species, such as Pigm, Pi9, Pi5 and Pi1, which were only detected in indica-type accessions, and Pik and Piz, which were just harbored in japonica-type accessions. By analyzing the relationship between R genes and RF using a multiple stepwise regression model, the R genes Pid3, Pi5, Pi9, Pi54, Pigm and Pit were found to show the main effects against M. oryzae in indica-type accessions, while Pita, Pb1, Pik, Pizt and Pia were indicated to exhibit the main effects against M. oryzae in japonica-type accessions. Principal component analysis (PCA) and cluster analysis revealed that combination patterns of major R genes were the main factors determining the resistance of rice varieties to M. oryzae, such as ‘Pi9+Pi54’, ‘Pid3+Pigm’, ‘Pi5+Pid3+Pigm’, ‘Pi5+Pi54+Pid3+Pigm’, ‘Pi5+Pid3’ and ‘Pi5+Pit+Pid3’ in indica-type accessions and ‘Pik+Pib’, ‘Pik+Pita’, ‘Pik+Pb1’, ‘Pizt+Pia’ and ‘Pizt+Pita’ in japonica-type accessions, which were able to confer effective resistance against M. oryzae. The above results provide good theoretical support for the rational utilization of combinations of major R genes in developing rice cultivars with broad-spectrum resistance.

Suggested Citation

  • Yunyu Wu & Ning Xiao & Ling Yu & Cunhong Pan & Yuhong Li & Xiaoxiang Zhang & Guangqing Liu & Zhengyuan Dai & Xuebiao Pan & Aihong Li, 2015. "Combination Patterns of Major R Genes Determine the Level of Resistance to the M. oryzae in Rice (Oryza sativa L.)," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
  • Handle: RePEc:plo:pone00:0126130
    DOI: 10.1371/journal.pone.0126130
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126130
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0126130&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0126130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hui & Mongiano, Gabriele & Fanchini, Davide & Titone, Patrizia & Tamborini, Luigi & Bregaglio, Simone, 2021. "Varietal susceptibility overcomes climate change effects on the future trends of rice blast disease in Northern Italy," Agricultural Systems, Elsevier, vol. 193(C).
    2. Md Azadul Haque & Mohd Y. Rafii & Martini Mohammad Yusoff & Nusaibah Syd Ali & Oladosu Yusuff & Debi Rani Datta & Mohammad Anisuzzaman & Mohammad Ferdous Ikbal, 2021. "Recent Advances in Rice Varietal Development for Durable Resistance to Biotic and Abiotic Stresses through Marker-Assisted Gene Pyramiding," Sustainability, MDPI, vol. 13(19), pages 1-25, September.
    3. Chaiwat Netpakdee & Sittiwut Mathasiripakorn & Arthit Sribunrueang & Sompong Chankaew & Tidarat Monkham & Siwaret Arikit & Jirawat Sanitchon, 2022. "QTL-Seq Approach Identified Pi63 Conferring Blast Resistance at the Seedling and Tillering Stages of Thai Indigenous Rice Variety “Phaladum”," Agriculture, MDPI, vol. 12(8), pages 1-14, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0126130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.