IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0124608.html
   My bibliography  Save this article

Fractional Vegetation Cover Estimation Based on an Improved Selective Endmember Spectral Mixture Model

Author

Listed:
  • Ying Li
  • Hong Wang
  • Xiao Bing Li

Abstract

Vegetation is an important part of ecosystem and estimation of fractional vegetation cover is of significant meaning to monitoring of vegetation growth in a certain region. With Landsat TM images and HJ-1B images as data source, an improved selective endmember linear spectral mixture model (SELSMM) was put forward in this research to estimate the fractional vegetation cover in Huangfuchuan watershed in China. We compared the result with the vegetation coverage estimated with linear spectral mixture model (LSMM) and conducted accuracy test on the two results with field survey data to study the effectiveness of different models in estimation of vegetation coverage. Results indicated that: (1) the RMSE of the estimation result of SELSMM based on TM images is the lowest, which is 0.044. The RMSEs of the estimation results of LSMM based on TM images, SELSMM based on HJ-1B images and LSMM based on HJ-1B images are respectively 0.052, 0.077 and 0.082, which are all higher than that of SELSMM based on TM images; (2) the R2 of SELSMM based on TM images, LSMM based on TM images, SELSMM based on HJ-1B images and LSMM based on HJ-1B images are respectively 0.668, 0.531, 0.342 and 0.336. Among these models, SELSMM based on TM images has the highest estimation accuracy and also the highest correlation with measured vegetation coverage. Of the two methods tested, SELSMM is superior to LSMM in estimation of vegetation coverage and it is also better at unmixing mixed pixels of TM images than pixels of HJ-1B images. So, the SELSMM based on TM images is comparatively accurate and reliable in the research of regional fractional vegetation cover estimation.

Suggested Citation

  • Ying Li & Hong Wang & Xiao Bing Li, 2015. "Fractional Vegetation Cover Estimation Based on an Improved Selective Endmember Spectral Mixture Model," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-15, April.
  • Handle: RePEc:plo:pone00:0124608
    DOI: 10.1371/journal.pone.0124608
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124608
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0124608&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0124608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peroni Venancio, Luan & Chartuni Mantovani, Everardo & do Amaral, Cibele Hummel & Usher Neale, Christopher Michael & Zution Gonçalves, Ivo & Filgueiras, Roberto & Coelho Eugenio, Fernando, 2020. "Potential of using spectral vegetation indices for corn green biomass estimation based on their relationship with the photosynthetic vegetation sub-pixel fraction," Agricultural Water Management, Elsevier, vol. 236(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0124608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.