IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0124472.html
   My bibliography  Save this article

Spatiotemporal Patterns and Predictability of Cyberattacks

Author

Listed:
  • Yu-Zhong Chen
  • Zi-Gang Huang
  • Shouhuai Xu
  • Ying-Cheng Lai

Abstract

A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term “spatio” refers to the IP address space. In particular, we focus on analyzing macroscopic properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack “fingerprints” and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches.

Suggested Citation

  • Yu-Zhong Chen & Zi-Gang Huang & Shouhuai Xu & Ying-Cheng Lai, 2015. "Spatiotemporal Patterns and Predictability of Cyberattacks," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-19, May.
  • Handle: RePEc:plo:pone00:0124472
    DOI: 10.1371/journal.pone.0124472
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124472
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0124472&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0124472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Paiheng & Yin, Likang & Yue, Zhongtao & Zhou, Tao, 2019. "On predictability of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 345-351.
    2. Shouhuai Xu & Moti Yung & Jingguo Wang, 2021. "Seeking Foundations for the Science of Cyber Security," Information Systems Frontiers, Springer, vol. 23(2), pages 263-267, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0124472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.