Author
Listed:
- Mellina M Jacob
- Gobinda Pangeni
- Bruno D Gomes
- Givago S Souza
- Manoel da Silva Filho
- Luiz Carlos L Silveira
- John Maguire
- Neil R A Parry
- Declan J McKeefry
- Jan Kremers
Abstract
We studied the spatial arrangement of L- and M-cone driven electroretinograms (ERGs) reflecting the activity of magno- and parvocellular pathways. L- and M-cone isolating sine wave stimuli were created with a four primary LED stimulator using triple silent substitution paradigms. Temporal frequencies were 8 and 12 Hz, to reflect cone opponent activity, and 30, 36 and 48 Hz to reflect luminance activity. The responses were measured for full-field stimuli and for different circular and annular stimuli. The ERG data confirm the presence of two different mechanisms at intermediate and high temporal frequencies. The responses measured at high temporal frequencies strongly depended upon spatial stimulus configuration. In the full-field conditions, the L-cone driven responses were substantially larger than the full-field M-cone driven responses and also than the L-cone driven responses with smaller stimuli. The M-cone driven responses at full-field and with 70° diameter stimuli displayed similar amplitudes. The L- and M-cone driven responses measured at 8 and 12 Hz were of similar amplitude and approximately in counter-phase. The amplitudes were constant for most stimulus configurations. The results indicate that, when the ERG reflects luminance activity, it is positively correlated with stimulus size. Beyond 35° retinal eccentricity, the retina mainly contains L-cones. Small stimuli are sufficient to obtain maximal ERGs at low temporal frequencies where the ERGs are also sensitive to cone-opponent processing.
Suggested Citation
Mellina M Jacob & Gobinda Pangeni & Bruno D Gomes & Givago S Souza & Manoel da Silva Filho & Luiz Carlos L Silveira & John Maguire & Neil R A Parry & Declan J McKeefry & Jan Kremers, 2015.
"The Spatial Properties of L- and M-Cone Inputs to Electroretinograms That Reflect Different Types of Post-Receptoral Processing,"
PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
Handle:
RePEc:plo:pone00:0121218
DOI: 10.1371/journal.pone.0121218
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0121218. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.