IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0117380.html
   My bibliography  Save this article

PON-P2: Prediction Method for Fast and Reliable Identification of Harmful Variants

Author

Listed:
  • Abhishek Niroula
  • Siddhaling Urolagin
  • Mauno Vihinen

Abstract

More reliable and faster prediction methods are needed to interpret enormous amounts of data generated by sequencing and genome projects. We have developed a new computational tool, PON-P2, for classification of amino acid substitutions in human proteins. The method is a machine learning-based classifier and groups the variants into pathogenic, neutral and unknown classes, on the basis of random forest probability score. PON-P2 is trained using pathogenic and neutral variants obtained from VariBench, a database for benchmark variation datasets. PON-P2 utilizes information about evolutionary conservation of sequences, physical and biochemical properties of amino acids, GO annotations and if available, functional annotations of variation sites. Extensive feature selection was performed to identify 8 informative features among altogether 622 features. PON-P2 consistently showed superior performance in comparison to existing state-of-the-art tools. In 10-fold cross-validation test, its accuracy and MCC are 0.90 and 0.80, respectively, and in the independent test, they are 0.86 and 0.71, respectively. The coverage of PON-P2 is 61.7% in the 10-fold cross-validation and 62.1% in the test dataset. PON-P2 is a powerful tool for screening harmful variants and for ranking and prioritizing experimental characterization. It is very fast making it capable of analyzing large variant datasets. PON-P2 is freely available at http://structure.bmc.lu.se/PON-P2/.

Suggested Citation

  • Abhishek Niroula & Siddhaling Urolagin & Mauno Vihinen, 2015. "PON-P2: Prediction Method for Fast and Reliable Identification of Harmful Variants," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-17, February.
  • Handle: RePEc:plo:pone00:0117380
    DOI: 10.1371/journal.pone.0117380
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117380
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0117380&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0117380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhishek Niroula & Mauno Vihinen, 2019. "How good are pathogenicity predictors in detecting benign variants?," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0117380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.