IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0116863.html
   My bibliography  Save this article

Height and Bone Mineral Density Are Associated with Naevus Count Supporting the Importance of Growth in Melanoma Susceptibility

Author

Listed:
  • Simone Ribero
  • Daniel Glass
  • Abraham Aviv
  • Timothy David Spector
  • Veronique Bataille

Abstract

Naevus count is the strongest risk factor for melanoma. Body Mass Index (BMI) has been linked to melanoma risk. In this study, we investigate the link between naevus count and height, weight and bone mineral density (BMD) in the TwinsUK cohort (N = 2119). In addition we adjusted for leucocyte telomere length (LTL) as LTL is linked to both BMD and naevus count. Naevus count was positively associated with height (p = 0.001) but not with weight (p = 0.187) despite adjusting for age and twin relatedness. This suggests that the previously reported melanoma association with BMI may be explained by height alone. Further adjustment for LTL did not affect the significance of the association between height and naevus count so LTL does not fully explain these results. BMD was associated with naevus count at the spine (coeff 18.9, p = 0.01), hip (coeff = 18.9, p = 0.03) and forearm (coeff = 32.7, p = 0.06) despite adjusting for age, twin relatedness, weight, height and LTL. This large study in healthy individuals shows that growth via height, probably in early life, and bone mass are risk factors for melanoma via increased naevus count. The link between these two phenotypes may possibly be explained by telomere biology, differentiation genes from the neural crests but also other yet unknown factors which may influence both bones and melanocytes biology.

Suggested Citation

  • Simone Ribero & Daniel Glass & Abraham Aviv & Timothy David Spector & Veronique Bataille, 2015. "Height and Bone Mineral Density Are Associated with Naevus Count Supporting the Importance of Growth in Melanoma Susceptibility," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-11, January.
  • Handle: RePEc:plo:pone00:0116863
    DOI: 10.1371/journal.pone.0116863
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116863
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0116863&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0116863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chrysiis Michaloglou & Liesbeth C. W. Vredeveld & Maria S. Soengas & Christophe Denoyelle & Thomas Kuilman & Chantal M. A. M. van der Horst & Donné M. Majoor & Jerry W. Shay & Wolter J. Mooi & Daniel , 2005. "BRAFE600-associated senescence-like cell cycle arrest of human naevi," Nature, Nature, vol. 436(7051), pages 720-724, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaskaren Kohli & Chen Ge & Eleni Fitsiou & Miriam Doepner & Simone M. Brandenburg & William J. Faller & Todd W. Ridky & Marco Demaria, 2022. "Targeting anti-apoptotic pathways eliminates senescent melanocytes and leads to nevi regression," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Yukinari Haraoka & Yuki Akieda & Yuri Nagai & Chihiro Mogi & Tohru Ishitani, 2022. "Zebrafish imaging reveals TP53 mutation switching oncogene-induced senescence from suppressor to driver in primary tumorigenesis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Marc A. Vittoria & Nathan Kingston & Kristyna Kotynkova & Eric Xia & Rui Hong & Lee Huang & Shayna McDonald & Andrew Tilston-Lunel & Revati Darp & Joshua D. Campbell & Deborah Lang & Xiaowei Xu & Crai, 2022. "Inactivation of the Hippo tumor suppressor pathway promotes melanoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Jean-Philippe Coppé & Christopher K Patil & Francis Rodier & Yu Sun & Denise P Muñoz & Joshua Goldstein & Peter S Nelson & Pierre-Yves Desprez & Judith Campisi, 2008. "Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-1, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0116863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.