IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0115123.html
   My bibliography  Save this article

A Nonlinear Dynamics Approach for Incorporating Wind-Speed Patterns into Wind-Power Project Evaluation

Author

Listed:
  • Ray Huffaker
  • Marco Bittelli

Abstract

Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind—the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

Suggested Citation

  • Ray Huffaker & Marco Bittelli, 2015. "A Nonlinear Dynamics Approach for Incorporating Wind-Speed Patterns into Wind-Power Project Evaluation," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-17, January.
  • Handle: RePEc:plo:pone00:0115123
    DOI: 10.1371/journal.pone.0115123
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115123
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0115123&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0115123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2006. "Wind power potential and characteristic analysis of the Pearl River Delta region, China," Renewable Energy, Elsevier, vol. 31(6), pages 739-753.
    2. Lu, Lin & Yang, Hongxing & Burnett, John, 2002. "Investigation on wind power potential on Hong Kong islands—an analysis of wind power and wind turbine characteristics," Renewable Energy, Elsevier, vol. 27(1), pages 1-12.
    3. Durak, Murat & Şen, Zekai, 2002. "Wind power potential in Turkey and Akhisar case study," Renewable Energy, Elsevier, vol. 25(3), pages 463-472.
    4. Weisser, D, 2003. "A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function," Renewable Energy, Elsevier, vol. 28(11), pages 1803-1812.
    5. Karamanis, D. & Tsabaris, C. & Stamoulis, K. & Georgopoulos, D., 2011. "Wind energy resources in the Ionian Sea," Renewable Energy, Elsevier, vol. 36(2), pages 815-822.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stosic, Tatijana & Telesca, Luciano & Stosic, Borko, 2021. "Multiparametric statistical and dynamical analysis of angular high-frequency wind speed time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    2. Monowar Hossain & Saad Mekhilef & Firdaus Afifi & Laith M Halabi & Lanre Olatomiwa & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2018. "Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-31, April.
    3. Juan. J. Flores & José R. Cedeño González & Héctor Rodríguez & Mario Graff & Rodrigo Lopez-Farias & Felix Calderon, 2019. "Soft Computing Methods with Phase Space Reconstruction for Wind Speed Forecasting—A Performance Comparison," Energies, MDPI, vol. 12(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    2. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    3. Steve H.L. Yim & Jimmy C.H. Fung & Alexis K.H. Lau, 2009. "Mesoscale Simulation of Year-to-Year Variation of Wind Power Potential over Southern China," Energies, MDPI, vol. 2(2), pages 1-22, June.
    4. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    5. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    6. Wang, Jianzhou & Qin, Shanshan & Jin, Shiqiang & Wu, Jie, 2015. "Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 26-42.
    7. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
    8. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    9. Rabbani, R. & Zeeshan, M., 2020. "Exploring the suitability of MERRA-2 reanalysis data for wind energy estimation, analysis of wind characteristics and energy potential assessment for selected sites in Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 1240-1251.
    10. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    11. Diaf, S. & Notton, G., 2013. "Evaluation of electricity generation and energy cost of wind energy conversion systems in southern Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 379-390.
    12. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    13. Kongnam, C. & Nuchprayoon, S. & Premrudeepreechacharn, S. & Uatrongjit, S., 2009. "Decision analysis on generation capacity of a wind park," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2126-2133, October.
    14. Kongnam, C. & Nuchprayoon, S., 2010. "A particle swarm optimization for wind energy control problem," Renewable Energy, Elsevier, vol. 35(11), pages 2431-2438.
    15. Mostafaeipour, A. & Sedaghat, A. & Dehghan-Niri, A.A. & Kalantar, V., 2011. "Wind energy feasibility study for city of Shahrbabak in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2545-2556, August.
    16. Alkhalidi, Mohamad A. & Al-Dabbous, Shoug Kh. & Neelamani, S. & Aldashti, Hassan A., 2019. "Wind energy potential at coastal and offshore locations in the state of Kuwait," Renewable Energy, Elsevier, vol. 135(C), pages 529-539.
    17. Morales, Luis & Lang, Francisco & Mattar, Cristian, 2012. "Mesoscale wind speed simulation using CALMET model and reanalysis information: An application to wind potential," Renewable Energy, Elsevier, vol. 48(C), pages 57-71.
    18. Safari, Bonfils, 2011. "Modeling wind speed and wind power distributions in Rwanda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 925-935, February.
    19. He, Junyi & Chan, P.W. & Li, Qiusheng & Lee, C.W., 2020. "Spatiotemporal analysis of offshore wind field characteristics and energy potential in Hong Kong," Energy, Elsevier, vol. 201(C).
    20. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0115123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.