IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0114145.html
   My bibliography  Save this article

A GPU-Based Implementation of the Firefly Algorithm for Variable Selection in Multivariate Calibration Problems

Author

Listed:
  • Lauro C M de Paula
  • Anderson S Soares
  • Telma W de Lima
  • Alexandre C B Delbem
  • Clarimar J Coelho
  • Arlindo R G Filho

Abstract

Several variable selection algorithms in multivariate calibration can be accelerated using Graphics Processing Units (GPU). Among these algorithms, the Firefly Algorithm (FA) is a recent proposed metaheuristic that may be used for variable selection. This paper presents a GPU-based FA (FA-MLR) with multiobjective formulation for variable selection in multivariate calibration problems and compares it with some traditional sequential algorithms in the literature. The advantage of the proposed implementation is demonstrated in an example involving a relatively large number of variables. The results showed that the FA-MLR, in comparison with the traditional algorithms is a more suitable choice and a relevant contribution for the variable selection problem. Additionally, the results also demonstrated that the FA-MLR performed in a GPU can be five times faster than its sequential implementation.

Suggested Citation

  • Lauro C M de Paula & Anderson S Soares & Telma W de Lima & Alexandre C B Delbem & Clarimar J Coelho & Arlindo R G Filho, 2014. "A GPU-Based Implementation of the Firefly Algorithm for Variable Selection in Multivariate Calibration Problems," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-22, December.
  • Handle: RePEc:plo:pone00:0114145
    DOI: 10.1371/journal.pone.0114145
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0114145
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0114145&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0114145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Vitor de Lucena & Telma Woerle de Lima & Anderson da Silva Soares & Clarimar José Coelho, 2012. "Multi-Objective Evolutionary Algorithm NSGA-II for Variables Selection in Multivariate Calibration Problems," International Journal of Natural Computing Research (IJNCR), IGI Global, vol. 3(4), pages 43-58, October.
    2. Afnizanfaizal Abdullah & Safaai Deris & Sohail Anwar & Satya N V Arjunan, 2013. "An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afnizanfaizal Abdullah & Safaai Deris & Mohd Saberi Mohamad & Sohail Anwar, 2013. "An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    2. Mona A. S. Ali & Fathimathul Rajeena P. P. & Diaa Salama Abd Elminaam, 2022. "A Feature Selection Based on Improved Artificial Hummingbird Algorithm Using Random Opposition-Based Learning for Solving Waste Classification Problem," Mathematics, MDPI, vol. 10(15), pages 1-34, July.
    3. Gisela C. V. Ramadas & Edite M. G. P. Fernandes & António M. V. Ramadas & Ana Maria A. C. Rocha & M. Fernanda P. Costa, 2018. "On Metaheuristics for Solving the Parameter Estimation Problem in Dynamic Systems: A Comparative Study," Journal of Optimization, Hindawi, vol. 2018, pages 1-21, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0114145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.