IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0112680.html
   My bibliography  Save this article

Cell Population Kinetics of Collagen Scaffolds in Ex Vivo Oral Wound Repair

Author

Listed:
  • Hermann Agis
  • Amy Collins
  • Andrei D Taut
  • Qiming Jin
  • Laura Kruger
  • Christoph Görlach
  • William V Giannobile

Abstract

Biodegradable collagen scaffolds are used clinically for oral soft tissue augmentation to support wound healing. This study sought to provide a novel ex vivo model for analyzing healing kinetics and gene expression of primary human gingival fibroblasts (hGF) within collagen scaffolds. Sponge type and gel type scaffolds with and without platelet-derived growth factor-BB (PDGF) were assessed in an hGF containing matrix. Morphology was evaluated with scanning electron microscopy, and hGF metabolic activity using MTT. We quantitated the population kinetics within the scaffolds based on cell density and distance from the scaffold border of DiI-labled hGFs over a two-week observation period. Gene expression was evaluated with gene array and qPCR. The sponge type scaffolds showed a porous morphology. Absolute cell number and distance was higher in sponge type scaffolds when compared to gel type scaffolds, in particular during the first week of observation. PDGF incorporated scaffolds increased cell numbers, distance, and formazan formation in the MTT assay. Gene expression dynamics revealed the induction of key genes associated with the generation of oral tissue. DKK1, CYR61, CTGF, TGFBR1 levels were increased and integrin ITGA2 levels were decreased in the sponge type scaffolds compared to the gel type scaffold. The results suggest that this novel model of oral wound healing provides insights into population kinetics and gene expression dynamics of biodegradable scaffolds.

Suggested Citation

  • Hermann Agis & Amy Collins & Andrei D Taut & Qiming Jin & Laura Kruger & Christoph Görlach & William V Giannobile, 2014. "Cell Population Kinetics of Collagen Scaffolds in Ex Vivo Oral Wound Repair," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-10, November.
  • Handle: RePEc:plo:pone00:0112680
    DOI: 10.1371/journal.pone.0112680
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112680
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0112680&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0112680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alfiya Akhmetshina & Katrin Palumbo & Clara Dees & Christina Bergmann & Paulius Venalis & Pawel Zerr & Angelika Horn & Trayana Kireva & Christian Beyer & Jochen Zwerina & Holm Schneider & Anika Sadows, 2012. "Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis," Nature Communications, Nature, vol. 3(1), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenxia Wang & Swarna Bale & Jun Wei & Bharath Yalavarthi & Dibyendu Bhattacharyya & Jing Jing Yan & Hiam Abdala-Valencia & Dan Xu & Hanshi Sun & Roberta G. Marangoni & Erica Herzog & Sergejs Berdnikov, 2022. "Fibroblast A20 governs fibrosis susceptibility and its repression by DREAM promotes fibrosis in multiple organs," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Han-Yi Chen & Wan-Chen Hsieh & Yu-Chieh Liu & Huei-Ying Li & Po-Yo Liu & Yu-Ting Hsu & Shao-Chun Hsu & An-Chi Luo & Wei-Chen Kuo & Yi-Jhen Huang & Gan-Guang Liou & Meng-Yun Lin & Chun-Jung Ko & Hsing-, 2024. "Mitochondrial injury induced by a Salmonella genotoxin triggers the proinflammatory senescence-associated secretory phenotype," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0112680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.