IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0111016.html
   My bibliography  Save this article

The Application of Gaussian Mixture Models for Signal Quantification in MALDI-ToF Mass Spectrometry of Peptides

Author

Listed:
  • John Christian G Spainhour
  • Michael G Janech
  • John H Schwacke
  • Juan Carlos Q Velez
  • Viswanathan Ramakrishnan

Abstract

Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) coupled with stable isotope standards (SIS) has been used to quantify native peptides. This peptide quantification by MALDI-TOF approach has difficulties quantifying samples containing peptides with ion currents in overlapping spectra. In these overlapping spectra the currents sum together, which modify the peak heights and make normal SIS estimation problematic. An approach using Gaussian mixtures based on known physical constants to model the isotopic cluster of a known compound is proposed here. The characteristics of this approach are examined for single and overlapping compounds. The approach is compared to two commonly used SIS quantification methods for single compound, namely Peak Intensity method and Riemann sum area under the curve (AUC) method. For studying the characteristics of the Gaussian mixture method, Angiotensin II, Angiotensin-2-10, and Angiotenisn-1-9 and their associated SIS peptides were used. The findings suggest, Gaussian mixture method has similar characteristics as the two methods compared for estimating the quantity of isolated isotopic clusters for single compounds. All three methods were tested using MALDI-TOF mass spectra collected for peptides of the renin-angiotensin system. The Gaussian mixture method accurately estimated the native to labeled ratio of several isolated angiotensin peptides (5.2% error in ratio estimation) with similar estimation errors to those calculated using peak intensity and Riemann sum AUC methods (5.9% and 7.7%, respectively). For overlapping angiotensin peptides, (where the other two methods are not applicable) the estimation error of the Gaussian mixture was 6.8%, which is within the acceptable range. In summary, for single compounds the Gaussian mixture method is equivalent or marginally superior compared to the existing methods of peptide quantification and is capable of quantifying overlapping (convolved) peptides within the acceptable margin of error.

Suggested Citation

  • John Christian G Spainhour & Michael G Janech & John H Schwacke & Juan Carlos Q Velez & Viswanathan Ramakrishnan, 2014. "The Application of Gaussian Mixture Models for Signal Quantification in MALDI-ToF Mass Spectrometry of Peptides," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-10, November.
  • Handle: RePEc:plo:pone00:0111016
    DOI: 10.1371/journal.pone.0111016
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111016
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0111016&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0111016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Zhong & Ting Zeng & Tao Jiang & Huan Wu & Xiaohong Chen & Yang Hong, 2021. "A Copula-Based Multivariate Probability Analysis for Flash Flood Risk under the Compound Effect of Soil Moisture and Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 83-98, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0111016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.