IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0109771.html
   My bibliography  Save this article

Covariance of Charged Amino Acids at Positions 322 and 440 of HIV-1 Env Contributes to Coreceptor Specificity of Subtype B Viruses, and Can Be Used to Improve the Performance of V3 Sequence-Based Coreceptor Usage Prediction Algorithms

Author

Listed:
  • Kieran Cashin
  • Jasminka Sterjovski
  • Katherine L Harvey
  • Paul A Ramsland
  • Melissa J Churchill
  • Paul R Gorry

Abstract

The ability to determine coreceptor usage of patient-derived human immunodeficiency virus type 1 (HIV-1) strains is clinically important, particularly for the administration of the CCR5 antagonist maraviroc. The envelope glycoprotein (Env) determinants of coreceptor specificity lie primarily within the gp120 V3 loop region, although other Env determinants have been shown to influence gp120-coreceptor interactions. Here, we determined whether conserved amino acid alterations outside the V3 loop that contribute to coreceptor usage exist, and whether these alterations improve the performance of V3 sequence-based coreceptor usage prediction algorithms. We demonstrate a significant covariant association between charged amino acids at position 322 in V3 and position 440 in the C4 Env region that contributes to the specificity of HIV-1 subtype B strains for CCR5 or CXCR4. Specifically, positively charged Lys/Arg at position 322 and negatively charged Asp/Glu at position 440 occurred more frequently in CXCR4-using viruses, whereas negatively charged Asp/Glu at position 322 and positively charged Arg at position 440 occurred more frequently in R5 strains. In the context of CD4-bound gp120, structural models suggest that covariation of amino acids at Env positions 322 and 440 has the potential to alter electrostatic interactions that are formed between gp120 and charged amino acids in the CCR5 N-terminus. We further demonstrate that inclusion of a “440 rule” can improve the sensitivity of several V3 sequence-based genotypic algorithms for predicting coreceptor usage of subtype B HIV-1 strains, without compromising specificity, and significantly improves the AUROC of the geno2pheno algorithm when set to its recommended false positive rate of 5.75%. Together, our results provide further mechanistic insights into the intra-molecular interactions within Env that contribute to coreceptor specificity of subtype B HIV-1 strains, and demonstrate that incorporation of Env determinants outside V3 can improve the reliability of coreceptor usage prediction algorithms.

Suggested Citation

  • Kieran Cashin & Jasminka Sterjovski & Katherine L Harvey & Paul A Ramsland & Melissa J Churchill & Paul R Gorry, 2014. "Covariance of Charged Amino Acids at Positions 322 and 440 of HIV-1 Env Contributes to Coreceptor Specificity of Subtype B Viruses, and Can Be Used to Improve the Performance of V3 Sequence-Based Core," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-11, October.
  • Handle: RePEc:plo:pone00:0109771
    DOI: 10.1371/journal.pone.0109771
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109771
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0109771&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0109771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. E. A. Berger & R. W. Doms & E.-M. Fenyö & B. T. M. Korber & D. R. Littman & J. P. Moore & Q. J. Sattentau & H. Schuitemaker & J. Sodroski & R. A. Weiss, 1998. "A new classification for HIV-1," Nature, Nature, vol. 391(6664), pages 240-240, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0109771. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.