IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0106709.html
   My bibliography  Save this article

Effects of Surface Asymmetry on Neuronal Growth

Author

Listed:
  • Elise Spedden
  • Matthew R Wiens
  • Melik C Demirel
  • Cristian Staii

Abstract

Detailed knowledge of how the surface physical properties, such as mechanics, topography and texture influence axonal outgrowth and guidance is essential for understanding the processes that control neuron development, the formation of functional neuronal connections and nerve regeneration. Here we synthesize asymmetric surfaces with well-controlled topography and texture and perform a systematic experimental and theoretical investigation of axonal outgrowth on these substrates. We demonstrate unidirectional axonal bias imparted by the surface ratchet-based topography and quantify the topographical guidance cues that control neuronal growth. We describe the growth cone dynamics using a general stochastic model (Fokker-Planck formalism) and use this model to extract two key dynamical parameters: diffusion (cell motility) coefficient and asymmetric drift coefficient. The drift coefficient is identified with the torque caused by the asymmetric ratchet topography. We relate the observed directional bias in axonal outgrowth to cellular contact guidance behavior, which results in an increase in the cell-surface coupling with increased surface anisotropy. We also demonstrate that the disruption of cytoskeletal dynamics through application of Taxol (stabilizer of microtubules) and Blebbistatin (inhibitor of myosin II activity) greatly reduces the directional bias imparted by these asymmetric surfaces. These results provide new insight into the role played by topographical cues in neuronal growth and could lead to new methods for stimulating neuronal regeneration and the engineering of artificial neuronal tissue.

Suggested Citation

  • Elise Spedden & Matthew R Wiens & Melik C Demirel & Cristian Staii, 2014. "Effects of Surface Asymmetry on Neuronal Growth," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
  • Handle: RePEc:plo:pone00:0106709
    DOI: 10.1371/journal.pone.0106709
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106709
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0106709&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0106709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilya Yurchenko & Joao Marcos Vensi Basso & Vladyslav Serhiiovych Syrotenko & Cristian Staii, 2019. "Anomalous diffusion for neuronal growth on surfaces with controlled geometries," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-21, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0106709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.