IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0105870.html
   My bibliography  Save this article

(GTG)5 MSP-PCR Fingerprinting as a Technique for Discrimination of Wine Associated Yeasts?

Author

Listed:
  • Mauricio Ramírez-Castrillón
  • Sandra Denise Camargo Mendes
  • Mario Inostroza-Ponta
  • Patricia Valente

Abstract

In microbiology, identification of all isolates by sequencing is still unfeasible in small research laboratories. Therefore, many yeast diversity studies follow a screening procedure consisting of clustering the yeast isolates using MSP-PCR fingerprinting, followed by identification of one or a few selected representatives of each cluster by sequencing. Although this procedure has been widely applied in the literature, it has not been properly validated. We evaluated a standardized protocol using MSP-PCR fingerprinting with the primers (GTG)5 and M13 for the discrimination of wine associated yeasts in South Brazil. Two datasets were used: yeasts isolated from bottled wines and vineyard environments. We compared the discriminatory power of both primers in a subset of 16 strains, choosing the primer (GTG)5 for further evaluation. Afterwards, we applied this technique to 245 strains, and compared the results with the identification obtained by partial sequencing of the LSU rRNA gene, considered as the gold standard. An array matrix was constructed for each dataset and used as input for clustering with two methods (hierarchical dendrograms and QAPGrid layout). For both yeast datasets, unrelated species were clustered in the same group. The sensitivity score of (GTG)5 MSP-PCR fingerprinting was high, but specificity was low. As a conclusion, the yeast diversity inferred in several previous studies may have been underestimated and some isolates were probably misidentified due to the compliance to this screening procedure.

Suggested Citation

  • Mauricio Ramírez-Castrillón & Sandra Denise Camargo Mendes & Mario Inostroza-Ponta & Patricia Valente, 2014. "(GTG)5 MSP-PCR Fingerprinting as a Technique for Discrimination of Wine Associated Yeasts?," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-8, August.
  • Handle: RePEc:plo:pone00:0105870
    DOI: 10.1371/journal.pone.0105870
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105870
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0105870&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0105870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mario Inostroza-Ponta & Regina Berretta & Pablo Moscato, 2011. "QAPgrid: A Two Level QAP-Based Approach for Large-Scale Data Analysis and Visualization," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leila M Naeni & Hugh Craig & Regina Berretta & Pablo Moscato, 2016. "A Novel Clustering Methodology Based on Modularity Optimisation for Detecting Authorship Affinities in Shakespearean Era Plays," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-27, August.
    2. Natalie Jane de Vries & Rodrigo Reis & Pablo Moscato, 2015. "Clustering Consumers Based on Trust, Confidence and Giving Behaviour: Data-Driven Model Building for Charitable Involvement in the Australian Not-For-Profit Sector," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-28, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0105870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.