IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0105541.html
   My bibliography  Save this article

Strong Discrepancies between Local Temperature Mapping and Interpolated Climatic Grids in Tropical Mountainous Agricultural Landscapes

Author

Listed:
  • Emile Faye
  • Mario Herrera
  • Lucio Bellomo
  • Jean-François Silvain
  • Olivier Dangles

Abstract

Bridging the gap between the predictions of coarse-scale climate models and the fine-scale climatic reality of species is a key issue of climate change biology research. While it is now well known that most organisms do not experience the climatic conditions recorded at weather stations, there is little information on the discrepancies between microclimates and global interpolated temperatures used in species distribution models, and their consequences for organisms’ performance. To address this issue, we examined the fine-scale spatiotemporal heterogeneity in air, crop canopy and soil temperatures of agricultural landscapes in the Ecuadorian Andes and compared them to predictions of global interpolated climatic grids. Temperature time-series were measured in air, canopy and soil for 108 localities at three altitudes and analysed using Fourier transform. Discrepancies between local temperatures vs. global interpolated grids and their implications for pest performance were then mapped and analysed using GIS statistical toolbox. Our results showed that global interpolated predictions over-estimate by 77.5±10% and under-estimate by 82.1±12% local minimum and maximum air temperatures recorded in the studied grid. Additional modifications of local air temperatures were due to the thermal buffering of plant canopies (from −2.7°K during daytime to 1.3°K during night-time) and soils (from −4.9°K during daytime to 6.7°K during night-time) with a significant effect of crop phenology on the buffer effect. This discrepancies between interpolated and local temperatures strongly affected predictions of the performance of an ectothermic crop pest as interpolated temperatures predicted pest growth rates 2.3–4.3 times lower than those predicted by local temperatures. This study provides quantitative information on the limitation of coarse-scale climate data to capture the reality of the climatic environment experienced by living organisms. In highly heterogeneous region such as tropical mountains, caution should therefore be taken when using global models to infer local-scale biological processes.

Suggested Citation

  • Emile Faye & Mario Herrera & Lucio Bellomo & Jean-François Silvain & Olivier Dangles, 2014. "Strong Discrepancies between Local Temperature Mapping and Interpolated Climatic Grids in Tropical Mountainous Agricultural Landscapes," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
  • Handle: RePEc:plo:pone00:0105541
    DOI: 10.1371/journal.pone.0105541
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105541
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0105541&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0105541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Ismaeel & Amos P. K. Tai & Erone Ghizoni Santos & Heveakore Maraia & Iris Aalto & Jan Altman & Jiří Doležal & Jonas J. Lembrechts & José Luís Camargo & Juha Aalto & Kateřina Sam & Lair Cristina Av, 2024. "Patterns of tropical forest understory temperatures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Blum, Moshe & Lensky, Itamar M. & Rempoulakis, Polychronis & Nestel, David, 2015. "Modeling insect population fluctuations with satellite land surface temperature," Ecological Modelling, Elsevier, vol. 311(C), pages 39-47.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0105541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.