IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0104970.html
   My bibliography  Save this article

Biophysical Characterisation of Calumenin as a Charged F508del-CFTR Folding Modulator

Author

Listed:
  • Rashmi Tripathi
  • Nathalie Benz
  • Bridget Culleton
  • Pascal Trouvé
  • Claude Férec

Abstract

The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF) patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood. Recently, calumenin, a secretory protein, belonging to the CREC family of low affinity calcium binding proteins has been identified as a putative CFTR chaperone whose biophysical properties and functions remain uncharacterized. We compared hydropathy, instability, charge, unfoldability, disorder and aggregation propensity of calumenin and other CREC family members with CFTR associated chaperones and calcium binding proteins, wild-type and mutant CFTR proteins and intrinsically disordered proteins (IDPs). We observed that calumenin, along with other CREC proteins, was significantly more charged and less folded compared to CFTR associated chaperones. Moreover like IDPs, calumenin and other CREC proteins were found to be less hydrophobic and aggregation prone. Phylogenetic analysis revealed a close link between calumenin and other CREC proteins indicating how evolution might have shaped their similar biophysical properties. Experimentally, calumenin was observed to significantly reduce F508del-CFTR aggregation in a manner similar to AavLEA1, a well-characterized IDP. Fluorescence microscopy based imaging analysis also revealed altered trafficking of calumenin in bronchial cells expressing F508del-CFTR, indicating its direct role in the pathophysiology of CF. In conclusion, calumenin is characterized as a charged protein exhibiting close similarity with IDPs and is hypothesized to regulate F508del-CFTR folding by electrostatic effects. This work provides useful insights for designing optimized synthetic structural correctors of CFTR mutant proteins in the future.

Suggested Citation

  • Rashmi Tripathi & Nathalie Benz & Bridget Culleton & Pascal Trouvé & Claude Férec, 2014. "Biophysical Characterisation of Calumenin as a Charged F508del-CFTR Folding Modulator," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
  • Handle: RePEc:plo:pone00:0104970
    DOI: 10.1371/journal.pone.0104970
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104970
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0104970&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0104970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Browne & Alan Tunnacliffe & Ann Burnell, 2002. "Plant desiccation gene found in a nematode," Nature, Nature, vol. 416(6876), pages 38-38, March.
    2. Marcella Calfon & Huiqing Zeng & Fumihiko Urano & Jeffery H. Till & Stevan R. Hubbard & Heather P. Harding & Scott G. Clark & David Ron, 2002. "IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA," Nature, Nature, vol. 415(6867), pages 92-96, January.
    3. Paola Vergani & Steve W. Lockless & Angus C. Nairn & David C. Gadsby, 2005. "CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains," Nature, Nature, vol. 433(7028), pages 876-880, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Potapov & Jenifer B Kaplan & Amy E Keating, 2015. "Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-28, February.
    2. Dadi Jiang & Youming Guo & Tianyu Wang & Liang Wang & Yuelong Yan & Ling Xia & Rakesh Bam & Zhifen Yang & Hyemin Lee & Takao Iwawaki & Boyi Gan & Albert C. Koong, 2024. "IRE1α determines ferroptosis sensitivity through regulation of glutathione synthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Emmanuel Jaspard & Gilles Hunault, 2014. "Comparison of Amino Acids Physico-Chemical Properties and Usage of Late Embryogenesis Abundant Proteins, Hydrophilins and WHy Domain," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-16, October.
    4. Fátima Cairrão & Cristiana C. Santos & Adrien Thomas & Scot Marsters & Avi Ashkenazi & Pedro M. Domingos, 2022. "Pumilio protects Xbp1 mRNA from regulated Ire1-dependent decay," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Kazuhiro Kashiwagi & Yuichi Shichino & Tatsuya Osaki & Ayako Sakamoto & Madoka Nishimoto & Mari Takahashi & Mari Mito & Friedemann Weber & Yoshiho Ikeuchi & Shintaro Iwasaki & Takuhiro Ito, 2021. "eIF2B-capturing viral protein NSs suppresses the integrated stress response," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Fiamma Salerno & Andrew J. M. Howden & Louise S. Matheson & Özge Gizlenci & Michael Screen & Holger Lingel & Monika C. Brunner-Weinzierl & Martin Turner, 2023. "An integrated proteome and transcriptome of B cell maturation defines poised activation states of transitional and mature B cells," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Jean-Claude Garaud & Jean-Nicolas Schickel & Gilles Blaison & Anne-Marie Knapp & Doulaye Dembele & Julie Ruer-Laventie & Anne-Sophie Korganow & Thierry Martin & Pauline Soulas-Sprauel & Jean-Louis Pas, 2011. "B Cell Signature during Inactive Systemic Lupus Is Heterogeneous: Toward a Biological Dissection of Lupus," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-9, August.
    8. Xiaolong Gao & Han-I Yeh & Zhengrong Yang & Chen Fan & Fan Jiang & Rebecca J. Howard & Erik Lindahl & John C. Kappes & Tzyh-Chang Hwang, 2024. "Allosteric inhibition of CFTR gating by CFTRinh-172 binding in the pore," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0104970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.