IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0103997.html
   My bibliography  Save this article

A New Method to Infer Causal Phenotype Networks Using QTL and Phenotypic Information

Author

Listed:
  • Huange Wang
  • Fred A van Eeuwijk

Abstract

In the context of genetics and breeding research on multiple phenotypic traits, reconstructing the directional or causal structure between phenotypic traits is a prerequisite for quantifying the effects of genetic interventions on the traits. Current approaches mainly exploit the genetic effects at quantitative trait loci (QTLs) to learn about causal relationships among phenotypic traits. A requirement for using these approaches is that at least one unique QTL has been identified for each trait studied. However, in practice, especially for molecular phenotypes such as metabolites, this prerequisite is often not met due to limited sample sizes, high noise levels and small QTL effects. Here, we present a novel heuristic search algorithm called the QTL+phenotype supervised orientation (QPSO) algorithm to infer causal directions for edges in undirected phenotype networks. The two main advantages of this algorithm are: first, it does not require QTLs for each and every trait; second, it takes into account associated phenotypic interactions in addition to detected QTLs when orienting undirected edges between traits. We evaluate and compare the performance of QPSO with another state-of-the-art approach, the QTL-directed dependency graph (QDG) algorithm. Simulation results show that our method has broader applicability and leads to more accurate overall orientations. We also illustrate our method with a real-life example involving 24 metabolites and a few major QTLs measured on an association panel of 93 tomato cultivars. Matlab source code implementing the proposed algorithm is freely available upon request.

Suggested Citation

  • Huange Wang & Fred A van Eeuwijk, 2014. "A New Method to Infer Causal Phenotype Networks Using QTL and Phenotypic Information," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-13, August.
  • Handle: RePEc:plo:pone00:0103997
    DOI: 10.1371/journal.pone.0103997
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103997
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0103997&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0103997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Renhua Li & Shirng-Wern Tsaih & Keith Shockley & Ioannis M Stylianou & Jon Wergedal & Beverly Paigen & Gary A Churchill, 2006. "Structural Model Analysis of Multiple Quantitative Traits," PLOS Genetics, Public Library of Science, vol. 2(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moharil Janhavi & May Paul & Gaile Daniel P. & Blair Rachael Hageman, 2016. "Belief propagation in genotype-phenotype networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 39-53, March.
    2. Jiguo Cao & Liangliang Wang & Zhongwen Huang & Junyi Gai & Rongling Wu, 2017. "Functional Mapping of Multiple Dynamic Traits," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 60-75, March.
    3. Benjamin A Logsdon & Jason Mezey, 2010. "Gene Expression Network Reconstruction by Convex Feature Selection when Incorporating Genetic Perturbations," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-13, December.
    4. Xiaodong Cai & Juan Andrés Bazerque & Georgios B Giannakis, 2013. "Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-13, May.
    5. Zijian Dong & Tiecheng Song & Chuang Yuan, 2013. "Inference of Gene Regulatory Networks from Genetic Perturbations with Linear Regression Model," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    6. Kaido Lepik & Tarmo Annilo & Viktorija Kukuškina & eQTLGen Consortium & Kai Kisand & Zoltán Kutalik & Pärt Peterson & Hedi Peterson, 2017. "C-reactive protein upregulates the whole blood expression of CD59 - an integrative analysis," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-20, September.
    7. Mi Xiaojuan & Eskridge Kent & Wang Dong & Baenziger P. Stephen & Campbell B. Todd & Gill Kulvinder S. & Dweikat Ismail & Bovaird James, 2010. "Regression-Based Multi-Trait QTL Mapping Using a Structural Equation Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-23, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0103997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.