IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0102070.html
   My bibliography  Save this article

Detecting Memory and Structure in Human Navigation Patterns Using Markov Chain Models of Varying Order

Author

Listed:
  • Philipp Singer
  • Denis Helic
  • Behnam Taraghi
  • Markus Strohmaier

Abstract

One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work.

Suggested Citation

  • Philipp Singer & Denis Helic & Behnam Taraghi & Markus Strohmaier, 2014. "Detecting Memory and Structure in Human Navigation Patterns Using Markov Chain Models of Varying Order," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-21, July.
  • Handle: RePEc:plo:pone00:0102070
    DOI: 10.1371/journal.pone.0102070
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102070
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0102070&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0102070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mona Gupta & Happy Mittal & Parag Singla & Amitabha Bagchi, 2017. "Analysis and characterization of comparison shopping behavior in the mobile handset domain," Electronic Commerce Research, Springer, vol. 17(3), pages 521-551, September.
    2. De Gregorio, Juan & Sánchez, David & Toral, Raúl, 2022. "An improved estimator of Shannon entropy with applications to systems with memory," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Harik, G. & Alameddine, I. & Zurayk, R. & El-Fadel, M., 2023. "Uncertainty in forecasting land cover land use at a watershed scale: Towards enhanced sustainable land management," Ecological Modelling, Elsevier, vol. 486(C).
    4. Asadabadi, Mehdi Rajabi, 2017. "A customer based supplier selection process that combines quality function deployment, the analytic network process and a Markov chain," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1049-1062.
    5. Liberopoulos, George & Deligiannis, Michalis, 2022. "Optimal supplier inventory control policies when buyer purchase incidence is driven by past service," European Journal of Operational Research, Elsevier, vol. 300(3), pages 917-936.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0102070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.