IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0101544.html
   My bibliography  Save this article

Impact of Genotype Imputation on the Performance of GBLUP and Bayesian Methods for Genomic Prediction

Author

Listed:
  • Liuhong Chen
  • Changxi Li
  • Mehdi Sargolzaei
  • Flavio Schenkel

Abstract

The aim of this study was to evaluate the impact of genotype imputation on the performance of the GBLUP and Bayesian methods for genomic prediction. A total of 10,309 Holstein bulls were genotyped on the BovineSNP50 BeadChip (50 k). Five low density single nucleotide polymorphism (SNP) panels, containing 6,177, 2,480, 1,536, 768 and 384 SNPs, were simulated from the 50 k panel. A fraction of 0%, 33% and 66% of the animals were randomly selected from the training sets to have low density genotypes which were then imputed into 50 k genotypes. A GBLUP and a Bayesian method were used to predict direct genomic values (DGV) for validation animals using imputed or their actual 50 k genotypes. Traits studied included milk yield, fat percentage, protein percentage and somatic cell score (SCS). Results showed that performance of both GBLUP and Bayesian methods was influenced by imputation errors. For traits affected by a few large QTL, the Bayesian method resulted in greater reductions of accuracy due to imputation errors than GBLUP. Including SNPs with largest effects in the low density panel substantially improved the accuracy of genomic prediction for the Bayesian method. Including genotypes imputed from the 6 k panel achieved almost the same accuracy of genomic prediction as that of using the 50 k panel even when 66% of the training population was genotyped on the 6 k panel. These results justified the application of the 6 k panel for genomic prediction. Imputations from lower density panels were more prone to errors and resulted in lower accuracy of genomic prediction. But for animals that have close relationship to the reference set, genotype imputation may still achieve a relatively high accuracy.

Suggested Citation

  • Liuhong Chen & Changxi Li & Mehdi Sargolzaei & Flavio Schenkel, 2014. "Impact of Genotype Imputation on the Performance of GBLUP and Bayesian Methods for Genomic Prediction," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-7, July.
  • Handle: RePEc:plo:pone00:0101544
    DOI: 10.1371/journal.pone.0101544
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101544
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0101544&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0101544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Guo & Bo Zhu & Lingyang Xu & Hong Niu & Zezhao Wang & Long Guan & Yonghu Liang & Hemin Ni & Yong Guo & Yan Chen & Lupei Zhang & Xue Gao & Huijiang Gao & Junya Li, 2017. "Genomic prediction with parallel computing for slaughter traits in Chinese Simmental beef cattle using high-density genotypes," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0101544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.