IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0100052.html
   My bibliography  Save this article

Mining Gene Expression Data of Multiple Sclerosis

Author

Listed:
  • Pi Guo
  • Qin Zhang
  • Zhenli Zhu
  • Zhengliang Huang
  • Ke Li

Abstract

Objectives: Microarray produces a large amount of gene expression data, containing various biological implications. The challenge is to detect a panel of discriminative genes associated with disease. This study proposed a robust classification model for gene selection using gene expression data, and performed an analysis to identify disease-related genes using multiple sclerosis as an example. Materials and methods: Gene expression profiles based on the transcriptome of peripheral blood mononuclear cells from a total of 44 samples from 26 multiple sclerosis patients and 18 individuals with other neurological diseases (control) were analyzed. Feature selection algorithms including Support Vector Machine based on Recursive Feature Elimination, Receiver Operating Characteristic Curve, and Boruta algorithms were jointly performed to select candidate genes associating with multiple sclerosis. Multiple classification models categorized samples into two different groups based on the identified genes. Models’ performance was evaluated using cross-validation methods, and an optimal classifier for gene selection was determined. Results: An overlapping feature set was identified consisting of 8 genes that were differentially expressed between the two phenotype groups. The genes were significantly associated with the pathways of apoptosis and cytokine-cytokine receptor interaction. TNFSF10 was significantly associated with multiple sclerosis. A Support Vector Machine model was established based on the featured genes and gave a practical accuracy of ∼86%. This binary classification model also outperformed the other models in terms of Sensitivity, Specificity and F1 score. Conclusions: The combined analytical framework integrating feature ranking algorithms and Support Vector Machine model could be used for selecting genes for other diseases.

Suggested Citation

  • Pi Guo & Qin Zhang & Zhenli Zhu & Zhengliang Huang & Ke Li, 2014. "Mining Gene Expression Data of Multiple Sclerosis," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
  • Handle: RePEc:plo:pone00:0100052
    DOI: 10.1371/journal.pone.0100052
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100052
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0100052&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0100052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donna K Slonim & Itai Yanai, 2009. "Getting Started in Gene Expression Microarray Analysis," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-4, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhang & Linlin Wang & Pu Tian & Suyan Tian, 2016. "Identification of Genes Discriminating Multiple Sclerosis Patients from Controls by Adapting a Pathway Analysis Method," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Reimers, 2010. "Making Informed Choices about Microarray Data Analysis," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-7, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0100052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.