IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0096536.html
   My bibliography  Save this article

The Tertiary Origin of the Allosteric Activation of E. coli Glucosamine-6-Phosphate Deaminase Studied by Sol-Gel Nanoencapsulation of Its T Conformer

Author

Listed:
  • Sergio Zonszein
  • Laura I Álvarez-Añorve
  • Roberto J Vázquez-Núñez
  • Mario L Calcagno

Abstract

The role of tertiary conformational changes associated to ligand binding was explored using the allosteric enzyme glucosamine-6-phosphate (GlcN6P) deaminase from Escherichia coli (EcGNPDA) as an experimental model. This is an enzyme of amino sugar catabolism that deaminates GlcN6P, giving fructose 6-phosphate and ammonia, and is allosterically activated by N-acetylglucosamine 6-phosphate (GlcNAc6P). We resorted to the nanoencapsulation of this enzyme in wet silica sol-gels for studying the role of intrasubunit local mobility in its allosteric activation under the suppression of quaternary transition. The gel-trapped enzyme lost its characteristic homotropic cooperativity while keeping its catalytic properties and the allosteric activation by GlcNAc6P. The nanoencapsulation keeps the enzyme in the T quaternary conformation, making possible the study of its allosteric activation under a condition that is not possible to attain in a soluble phase. The involved local transition was slowed down by nanoencapsulation, thus easing the fluorometric analysis of its relaxation kinetics, which revealed an induced-fit mechanism. The absence of cooperativity produced allosterically activated transitory states displaying velocity against substrate concentration curves with apparent negative cooperativity, due to the simultaneous presence of subunits with different substrate affinities. Reaction kinetics experiments performed at different tertiary conformational relaxation times also reveal the sequential nature of the allosteric activation. We assumed as a minimal model the existence of two tertiary states, t and r, of low and high affinity, respectively, for the substrate and the activator. By fitting the velocity-substrate curves as a linear combination of two hyperbolic functions with Kt and Kr as KM values, we obtained comparable values to those reported for the quaternary conformers in solution fitted to MWC model. These results are discussed in the background of the known crystallographic structures of T and R EcGNPDA conformers. These results are consistent with the postulates of the Tertiary Two-States (TTS) model.

Suggested Citation

  • Sergio Zonszein & Laura I Álvarez-Añorve & Roberto J Vázquez-Núñez & Mario L Calcagno, 2014. "The Tertiary Origin of the Allosteric Activation of E. coli Glucosamine-6-Phosphate Deaminase Studied by Sol-Gel Nanoencapsulation of Its T Conformer," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-9, May.
  • Handle: RePEc:plo:pone00:0096536
    DOI: 10.1371/journal.pone.0096536
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096536
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0096536&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0096536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonila Lagunes & Lee Bardwell & German A Enciso, 2020. "Effect of magnitude and variability of energy of activation in multisite ultrasensitive biochemical processes," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-26, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0096536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.