IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0095576.html
   My bibliography  Save this article

Image Registration Algorithm Using Mexican Hat Function-Based Operator and Grouped Feature Matching Strategy

Author

Listed:
  • Feng Jin
  • Dazheng Feng

Abstract

Feature detection and matching are crucial for robust and reliable image registration. Although many methods have been developed, they commonly focus on only one class of image features. The methods that combine two or more classes of features are still novel and significant. In this work, methods for feature detection and matching are proposed. A Mexican hat function-based operator is used for image feature detection, including the local area detection and the feature point detection. For the local area detection, we use the Mexican hat operator for image filtering, and then the zero-crossing points are extracted and merged into the area borders. For the feature point detection, the Mexican hat operator is performed in scale space to get the key points. After the feature detection, an image registration is achieved by using the two classes of image features. The feature points are grouped according to a standardized region that contains correspondence to the local area, precise registration is achieved eventually by the grouped points. An image transformation matrix is estimated by the feature points in a region and then the best one is chosen through competition of a set of the transformation matrices. This strategy has been named the Grouped Sample Consensus (GCS). The GCS has also ability for removing the outliers effectively. The experimental results show that the proposed algorithm has high registration accuracy and small computational volume.

Suggested Citation

  • Feng Jin & Dazheng Feng, 2014. "Image Registration Algorithm Using Mexican Hat Function-Based Operator and Grouped Feature Matching Strategy," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
  • Handle: RePEc:plo:pone00:0095576
    DOI: 10.1371/journal.pone.0095576
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095576
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0095576&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0095576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franklin Leong & Babak Rahmani & Demetri Psaltis & Christophe Moser & Diego Ghezzi, 2024. "An actor-model framework for visual sensory encoding," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0095576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.