IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0092600.html
   My bibliography  Save this article

IPCA-CMI: An Algorithm for Inferring Gene Regulatory Networks based on a Combination of PCA-CMI and MIT Score

Author

Listed:
  • Rosa Aghdam
  • Mojtaba Ganjali
  • Changiz Eslahchi

Abstract

Inferring gene regulatory networks (GRNs) is a major issue in systems biology, which explicitly characterizes regulatory processes in the cell. The Path Consistency Algorithm based on Conditional Mutual Information (PCA-CMI) is a well-known method in this field. In this study, we introduce a new algorithm (IPCA-CMI) and apply it to a number of gene expression data sets in order to evaluate the accuracy of the algorithm to infer GRNs. The IPCA-CMI can be categorized as a hybrid method, using the PCA-CMI and Hill-Climbing algorithm (based on MIT score). The conditional dependence between variables is determined by the conditional mutual information test which can take into account both linear and nonlinear genes relations. IPCA-CMI uses a score and search method and defines a selected set of variables which is adjacent to one of or Y. This set is used to determine the dependency between X and Y. This method is compared with the method of evaluating dependency by PCA-CMI in which the set of variables adjacent to both X and Y, is selected. The merits of the IPCA-CMI are evaluated by applying this algorithm to the DREAM3 Challenge data sets with n variables and n samples () and to experimental data from Escherichia coil containing 9 variables and 9 samples. Results indicate that applying the IPCA-CMI improves the precision of learning the structure of the GRNs in comparison with that of the PCA-CMI.

Suggested Citation

  • Rosa Aghdam & Mojtaba Ganjali & Changiz Eslahchi, 2014. "IPCA-CMI: An Algorithm for Inferring Gene Regulatory Networks based on a Combination of PCA-CMI and MIT Score," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
  • Handle: RePEc:plo:pone00:0092600
    DOI: 10.1371/journal.pone.0092600
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0092600
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0092600&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0092600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Liu & Shao-Wu Zhang & Wei-Feng Guo & Ze-Gang Wei & Luonan Chen, 2016. "Inference of Gene Regulatory Network Based on Local Bayesian Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-17, August.
    2. Rosa Aghdam & Mojtaba Ganjali & Parisa Niloofar & Changiz Eslahchi, 2016. "Inferring gene regulatory networks by an order independent algorithm using incomplete data sets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 893-913, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0092600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.