IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0092197.html
   My bibliography  Save this article

De Novo Structure Prediction of Globular Proteins Aided by Sequence Variation-Derived Contacts

Author

Listed:
  • Tomasz Kosciolek
  • David T Jones

Abstract

The advent of high accuracy residue-residue intra-protein contact prediction methods enabled a significant boost in the quality of de novo structure predictions. Here, we investigate the potential benefits of combining a well-established fragment-based folding algorithm – FRAGFOLD, with PSICOV, a contact prediction method which uses sparse inverse covariance estimation to identify co-varying sites in multiple sequence alignments. Using a comprehensive set of 150 diverse globular target proteins, up to 266 amino acids in length, we are able to address the effectiveness and some limitations of such approaches to globular proteins in practice. Overall we find that using fragment assembly with both statistical potentials and predicted contacts is significantly better than either statistical potentials or contacts alone. Results show up to nearly 80% of correct predictions (TM-score ≥0.5) within analysed dataset and a mean TM-score of 0.54. Unsuccessful modelling cases emerged either from conformational sampling problems, or insufficient contact prediction accuracy. Nevertheless, a strong dependency of the quality of final models on the fraction of satisfied predicted long-range contacts was observed. This not only highlights the importance of these contacts on determining the protein fold, but also (combined with other ensemble-derived qualities) provides a powerful guide as to the choice of correct models and the global quality of the selected model. A proposed quality assessment scoring function achieves 0.93 precision and 0.77 recall for the discrimination of correct folds on our dataset of decoys. These findings suggest the approach is well-suited for blind predictions on a variety of globular proteins of unknown 3D structure, provided that enough homologous sequences are available to construct a large and accurate multiple sequence alignment for the initial contact prediction step.

Suggested Citation

  • Tomasz Kosciolek & David T Jones, 2014. "De Novo Structure Prediction of Globular Proteins Aided by Sequence Variation-Derived Contacts," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-15, March.
  • Handle: RePEc:plo:pone00:0092197
    DOI: 10.1371/journal.pone.0092197
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0092197
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0092197&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0092197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatjana Braun & Julia Koehler Leman & Oliver F Lange, 2015. "Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-20, December.
    2. Susann Vorberg & Stefan Seemayer & Johannes Söding, 2018. "Synthetic protein alignments by CCMgen quantify noise in residue-residue contact prediction," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-25, November.
    3. Michael Schneider & Oliver Brock, 2014. "Combining Physicochemical and Evolutionary Information for Protein Contact Prediction," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-15, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0092197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.