IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0090593.html
   My bibliography  Save this article

Plasticity in the Macromolecular-Scale Causal Networks of Cell Migration

Author

Listed:
  • John G Lock
  • Mehrdad Jafari Mamaghani
  • Hamdah Shafqat-Abbasi
  • Xiaowei Gong
  • Joanna Tyrcha
  • Staffan Strömblad

Abstract

Heterogeneous and dynamic single cell migration behaviours arise from a complex multi-scale signalling network comprising both molecular components and macromolecular modules, among which cell-matrix adhesions and F-actin directly mediate migration. To date, the global wiring architecture characterizing this network remains poorly defined. It is also unclear whether such a wiring pattern may be stable and generalizable to different conditions, or plastic and context dependent. Here, synchronous imaging-based quantification of migration system organization, represented by 87 morphological and dynamic macromolecular module features, and migration system behaviour, i.e., migration speed, facilitated Granger causality analysis. We thereby leveraged natural cellular heterogeneity to begin mapping the directionally specific causal wiring between organizational and behavioural features of the cell migration system. This represents an important advance on commonly used correlative analyses that do not resolve causal directionality. We identified organizational features such as adhesion stability and adhesion F-actin content that, as anticipated, causally influenced cell migration speed. Strikingly, we also found that cell speed can exert causal influence over organizational features, including cell shape and adhesion complex location, thus revealing causality in directions contradictory to previous expectations. Importantly, by comparing unperturbed and signalling-modulated cells, we provide proof-of-principle that causal interaction patterns are in fact plastic and context dependent, rather than stable and generalizable.

Suggested Citation

  • John G Lock & Mehrdad Jafari Mamaghani & Hamdah Shafqat-Abbasi & Xiaowei Gong & Joanna Tyrcha & Staffan Strömblad, 2014. "Plasticity in the Macromolecular-Scale Causal Networks of Cell Migration," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-17, February.
  • Handle: RePEc:plo:pone00:0090593
    DOI: 10.1371/journal.pone.0090593
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090593
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0090593&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0090593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Jae Wook & Ko, Bonggyun & Cho, Poongjin & Chang, Woojin, 2016. "Time-varying causal network of the Korean financial system based on firm-specific risk premiums," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 287-302.
    2. Jacob C Kimmel & Amy Y Chang & Andrew S Brack & Wallace F Marshall, 2018. "Inferring cell state by quantitative motility analysis reveals a dynamic state system and broken detailed balance," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-29, January.
    3. Jacob M Kowalewski & Hamdah Shafqat-Abbasi & Mehrdad Jafari-Mamaghani & Bereket Endrias Ganebo & Xiaowei Gong & Staffan Strömblad & John G Lock, 2015. "Disentangling Membrane Dynamics and Cell Migration; Differential Influences of F-actin and Cell-Matrix Adhesions," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-23, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0090593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.