IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0086869.html
   My bibliography  Save this article

CUSHAW3: Sensitive and Accurate Base-Space and Color-Space Short-Read Alignment with Hybrid Seeding

Author

Listed:
  • Yongchao Liu
  • Bernt Popp
  • Bertil Schmidt

Abstract

The majority of next-generation sequencing short-reads can be properly aligned by leading aligners at high speed. However, the alignment quality can still be further improved, since usually not all reads can be correctly aligned to large genomes, such as the human genome, even for simulated data. Moreover, even slight improvements in this area are important but challenging, and usually require significantly more computational endeavor. In this paper, we present CUSHAW3, an open-source parallelized, sensitive and accurate short-read aligner for both base-space and color-space sequences. In this aligner, we have investigated a hybrid seeding approach to improve alignment quality, which incorporates three different seed types, i.e. maximal exact match seeds, exact-match k-mer seeds and variable-length seeds, into the alignment pipeline. Furthermore, three techniques: weighted seed-pairing heuristic, paired-end alignment pair ranking and read mate rescuing have been conceived to facilitate accurate paired-end alignment. For base-space alignment, we have compared CUSHAW3 to Novoalign, CUSHAW2, BWA-MEM, Bowtie2 and GEM, by aligning both simulated and real reads to the human genome. The results show that CUSHAW3 consistently outperforms CUSHAW2, BWA-MEM, Bowtie2 and GEM in terms of single-end and paired-end alignment. Furthermore, our aligner has demonstrated better paired-end alignment performance than Novoalign for short-reads with high error rates. For color-space alignment, CUSHAW3 is consistently one of the best aligners compared to SHRiMP2 and BFAST. The source code of CUSHAW3 and all simulated data are available at http://cushaw3.sourceforge.net.

Suggested Citation

  • Yongchao Liu & Bernt Popp & Bertil Schmidt, 2014. "CUSHAW3: Sensitive and Accurate Base-Space and Color-Space Short-Read Alignment with Hybrid Seeding," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
  • Handle: RePEc:plo:pone00:0086869
    DOI: 10.1371/journal.pone.0086869
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086869
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0086869&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0086869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruibang Luo & Thomas Wong & Jianqiao Zhu & Chi-Man Liu & Xiaoqian Zhu & Edward Wu & Lap-Kei Lee & Haoxiang Lin & Wenjuan Zhu & David W Cheung & Hing-Fung Ting & Siu-Ming Yiu & Shaoliang Peng & Chang Y, 2013. "SOAP3-dp: Fast, Accurate and Sensitive GPU-Based Short Read Aligner," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    2. Nils Homer & Barry Merriman & Stanley F Nelson, 2009. "BFAST: An Alignment Tool for Large Scale Genome Resequencing," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars Hahn & Chris-André Leimeister & Rachid Ounit & Stefano Lonardi & Burkhard Morgenstern, 2016. "rasbhari: Optimizing Spaced Seeds for Database Searching, Read Mapping and Alignment-Free Sequence Comparison," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-18, October.
    2. Joshua C Bis & Anita DeStefano & Xiaoming Liu & Jennifer A Brody & Seung Hoan Choi & Benjamin F J Verhaaren & Stéphanie Debette & M Arfan Ikram & Eyal Shahar & Kenneth R Butler Jr & Rebecca F Gottesma, 2014. "Associations of NINJ2 Sequence Variants with Incident Ischemic Stroke in the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) Consortium," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-7, June.
    3. Matthew Zook & Solon Barocas & danah boyd & Kate Crawford & Emily Keller & Seeta Peña Gangadharan & Alyssa Goodman & Rachelle Hollander & Barbara A Koenig & Jacob Metcalf & Arvind Narayanan & Alondra , 2017. "Ten simple rules for responsible big data research," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-10, March.
    4. Afonso R. M. Almeida & João L. Neto & Ana Cachucho & Mayara Euzébio & Xiangyu Meng & Rathana Kim & Marta B. Fernandes & Beatriz Raposo & Mariana L. Oliveira & Daniel Ribeiro & Rita Fragoso & Priscila , 2021. "Interleukin-7 receptor α mutational activation can initiate precursor B-cell acute lymphoblastic leukemia," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Swetansu Pattnaik & Srividya Vaidyanathan & Durgad G Pooja & Sa Deepak & Binay Panda, 2012. "Customisation of the Exome Data Analysis Pipeline Using a Combinatorial Approach," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-9, January.
    6. Le’an Qu & Zhenjie Chen & Manchun Li, 2019. "CART-RF Classification with Multifilter for Monitoring Land Use Changes Based on MODIS Time-Series Data: A Case Study from Jiangsu Province, China," Sustainability, MDPI, vol. 11(20), pages 1-23, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0086869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.