IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0086587.html
   My bibliography  Save this article

optGpSampler: An Improved Tool for Uniformly Sampling the Solution-Space of Genome-Scale Metabolic Networks

Author

Listed:
  • Wout Megchelenbrink
  • Martijn Huynen
  • Elena Marchiori

Abstract

Constraint-based models of metabolic networks are typically underdetermined, because they contain more reactions than metabolites. Therefore the solutions to this system do not consist of unique flux rates for each reaction, but rather a space of possible flux rates. By uniformly sampling this space, an estimated probability distribution for each reaction’s flux in the network can be obtained. However, sampling a high dimensional network is time-consuming. Furthermore, the constraints imposed on the network give rise to an irregularly shaped solution space. Therefore more tailored, efficient sampling methods are needed. We propose an efficient sampling algorithm (called optGpSampler), which implements the Artificial Centering Hit-and-Run algorithm in a different manner than the sampling algorithm implemented in the COBRA Toolbox for metabolic network analysis, here called gpSampler. Results of extensive experiments on different genome-scale metabolic networks show that optGpSampler is up to 40 times faster than gpSampler. Application of existing convergence diagnostics on small network reconstructions indicate that optGpSampler converges roughly ten times faster than gpSampler towards similar sampling distributions. For networks of higher dimension (i.e. containing more than 500 reactions), we observed significantly better convergence of optGpSampler and a large deviation between the samples generated by the two algorithms. Availability: optGpSampler for Matlab and Python is available for non-commercial use at: http://cs.ru.nl/~wmegchel/optGpSampler/.

Suggested Citation

  • Wout Megchelenbrink & Martijn Huynen & Elena Marchiori, 2014. "optGpSampler: An Improved Tool for Uniformly Sampling the Solution-Space of Genome-Scale Metabolic Networks," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
  • Handle: RePEc:plo:pone00:0086587
    DOI: 10.1371/journal.pone.0086587
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086587
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0086587&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0086587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David E. Kaufman & Robert L. Smith, 1998. "Direction Choice for Accelerated Convergence in Hit-and-Run Sampling," Operations Research, INFORMS, vol. 46(1), pages 84-95, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2024. "Randomized Control in Performance Analysis and Empirical Asset Pricing," Papers 2403.00009, arXiv.org.
    2. Shirin Fallahi & Hans J Skaug & Guttorm Alendal, 2020. "A comparison of Monte Carlo sampling methods for metabolic network models," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-24, July.
    3. Asli Sahin & Daniel R. Weilandt & Vassily Hatzimanikatis, 2023. "Optimal enzyme utilization suggests that concentrations and thermodynamics determine binding mechanisms and enzyme saturations," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Marcelo Rivas-Astroza & Raúl Conejeros, 2020. "Metabolic flux configuration determination using information entropy," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. André Schultz & Amina A Qutub, 2016. "Reconstruction of Tissue-Specific Metabolic Networks Using CORDA," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-33, March.
    2. Shirin Fallahi & Hans J Skaug & Guttorm Alendal, 2020. "A comparison of Monte Carlo sampling methods for metabolic network models," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-24, July.
    3. Boris Polyak & Elena Gryazina, 2011. "Randomized methods based on new Monte Carlo schemes for control and optimization," Annals of Operations Research, Springer, vol. 189(1), pages 343-356, September.
    4. Badenbroek, Riley & de Klerk, Etienne, 2022. "Complexity analysis of a sampling-based interior point method for convex optimization," Other publications TiSEM 3d774c6d-8141-4f31-a621-5, Tilburg University, School of Economics and Management.
    5. Carles Foguet & Yu Xu & Scott C. Ritchie & Samuel A. Lambert & Elodie Persyn & Artika P. Nath & Emma E. Davenport & David J. Roberts & Dirk S. Paul & Emanuele Angelantonio & John Danesh & Adam S. Butt, 2022. "Genetically personalised organ-specific metabolic models in health and disease," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Ziwei Dai & Weiyan Zheng & Jason W. Locasale, 2022. "Amino acid variability, tradeoffs and optimality in human diet," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2024. "Randomized Control in Performance Analysis and Empirical Asset Pricing," Papers 2403.00009, arXiv.org.
    8. Asli Sahin & Daniel R. Weilandt & Vassily Hatzimanikatis, 2023. "Optimal enzyme utilization suggests that concentrations and thermodynamics determine binding mechanisms and enzyme saturations," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0086587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.