IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0086001.html
   My bibliography  Save this article

Optimization of Landscape Services under Uncoordinated Management by Multiple Landowners

Author

Listed:
  • Miguel Porto
  • Otília Correia
  • Pedro Beja

Abstract

Landscapes are often patchworks of private properties, where composition and configuration patterns result from cumulative effects of the actions of multiple landowners. Securing the delivery of services in such multi-ownership landscapes is challenging, because it is difficult to assure tight compliance to spatially explicit management rules at the level of individual properties, which may hinder the conservation of critical landscape features. To deal with these constraints, a multi-objective simulation-optimization procedure was developed to select non-spatial management regimes that best meet landscape-level objectives, while accounting for uncoordinated and uncertain response of individual landowners to management rules. Optimization approximates the non-dominated Pareto frontier, combining a multi-objective genetic algorithm and a simulator that forecasts trends in landscape pattern as a function of management rules implemented annually by individual landowners. The procedure was demonstrated with a case study for the optimum scheduling of fuel treatments in cork oak forest landscapes, involving six objectives related to reducing management costs (1), reducing fire risk (3), and protecting biodiversity associated with mid- and late-successional understories (2). There was a trade-off between cost, fire risk and biodiversity objectives, that could be minimized by selecting management regimes involving ca. 60% of landowners clearing the understory at short intervals (around 5 years), and the remaining managing at long intervals (ca. 75 years) or not managing. The optimal management regimes produces a mosaic landscape dominated by stands with herbaceous and low shrub understories, but also with a satisfactory representation of old understories, that was favorable in terms of both fire risk and biodiversity. The simulation-optimization procedure presented can be extended to incorporate a wide range of landscape dynamic processes, management rules and quantifiable objectives. It may thus be adapted to other socio-ecological systems, particularly where specific patterns of landscape heterogeneity are to be maintained despite imperfect management by multiple landowners.

Suggested Citation

  • Miguel Porto & Otília Correia & Pedro Beja, 2014. "Optimization of Landscape Services under Uncoordinated Management by Multiple Landowners," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-16, January.
  • Handle: RePEc:plo:pone00:0086001
    DOI: 10.1371/journal.pone.0086001
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086001
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0086001&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0086001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey S. Rabotyagov & Adriana M. Valcu-Lisman & Catherine L. Kling, 2016. "Resilient Provision of Ecosystem Services from Agricultural Landscapes: Trade-offs Involving Means and Variances of Water Quality Improvements," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(5), pages 1295-1313.
    2. Ingrid Vigna & Angelo Besana & Elena Comino & Alessandro Pezzoli, 2021. "Application of the Socio-Ecological System Framework to Forest Fire Risk Management: A Systematic Literature Review," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    3. Zhen, Chen & Zheng, Xiaoyong, 2015. "Measuring the Informational Value of Interpretive Shelf Nutrition Labels to Shoppers," 2016 Allied Social Sciences Association (ASSA) Annual Meeting, January 3-5, 2016, San Francisco, California 212812, Agricultural and Applied Economics Association.
    4. Marek Vach & Pavla Vachová, 2016. "Stochastic Identification of Stability of Competitive Interactions in Ecosystems," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-12, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0086001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.