IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0085458.html
   My bibliography  Save this article

One-against-All Weighted Dynamic Time Warping for Language-Independent and Speaker-Dependent Speech Recognition in Adverse Conditions

Author

Listed:
  • Xianglilan Zhang
  • Jiping Sun
  • Zhigang Luo

Abstract

Considering personal privacy and difficulty of obtaining training material for many seldom used English words and (often non-English) names, language-independent (LI) with lightweight speaker-dependent (SD) automatic speech recognition (ASR) is a promising option to solve the problem. The dynamic time warping (DTW) algorithm is the state-of-the-art algorithm for small foot-print SD ASR applications with limited storage space and small vocabulary, such as voice dialing on mobile devices, menu-driven recognition, and voice control on vehicles and robotics. Even though we have successfully developed two fast and accurate DTW variations for clean speech data, speech recognition for adverse conditions is still a big challenge. In order to improve recognition accuracy in noisy environment and bad recording conditions such as too high or low volume, we introduce a novel one-against-all weighted DTW (OAWDTW). This method defines a one-against-all index (OAI) for each time frame of training data and applies the OAIs to the core DTW process. Given two speech signals, OAWDTW tunes their final alignment score by using OAI in the DTW process. Our method achieves better accuracies than DTW and merge-weighted DTW (MWDTW), as 6.97% relative reduction of error rate (RRER) compared with DTW and 15.91% RRER compared with MWDTW are observed in our extensive experiments on one representative SD dataset of four speakers' recordings. To the best of our knowledge, OAWDTW approach is the first weighted DTW specially designed for speech data in adverse conditions.

Suggested Citation

  • Xianglilan Zhang & Jiping Sun & Zhigang Luo, 2014. "One-against-All Weighted Dynamic Time Warping for Language-Independent and Speaker-Dependent Speech Recognition in Adverse Conditions," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-9, February.
  • Handle: RePEc:plo:pone00:0085458
    DOI: 10.1371/journal.pone.0085458
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085458
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0085458&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0085458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelsey Chalmers & Elizabeth M Kita & Ethan K Scott & Geoffrey J Goodhill, 2016. "Quantitative Analysis of Axonal Branch Dynamics in the Developing Nervous System," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-25, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0085458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.