Author
Listed:
- Ying Wang
- Lin Liu
- Lina Chen
- Ting Chen
- Fengzhu Sun
Abstract
Background: The comparison of samples, or beta diversity, is one of the essential problems in ecological studies. Next generation sequencing (NGS) technologies make it possible to obtain large amounts of metagenomic and metatranscriptomic short read sequences across many microbial communities. De novo assembly of the short reads can be especially challenging because the number of genomes and their sequences are generally unknown and the coverage of each genome can be very low, where the traditional alignment-based sequence comparison methods cannot be used. Alignment-free approaches based on k-tuple frequencies, on the other hand, have yielded promising results for the comparison of metagenomic samples. However, it is not known if these approaches can be used for the comparison of metatranscriptome datasets and which dissimilarity measures perform the best. Results: We applied several beta diversity measures based on k-tuple frequencies to real metatranscriptomic datasets from pyrosequencing 454 and Illumina sequencing platforms to evaluate their effectiveness for the clustering of metatranscriptomic samples, including three dissimilarity measures, one dissimilarity measure in CVTree, one relative entropy based measure S2 and three classical distances. Results showed that the measure can achieve superior performance on clustering metatranscriptomic samples into different groups under different sequencing depths for both 454 and Illumina datasets, recovering environmental gradients affecting microbial samples, classifying coexisting metagenomic and metatranscriptomic datasets, and being robust to sequencing errors. We also investigated the effects of tuple size and order of the background Markov model. A software pipeline to implement all the steps of analysis is built and is available at http://code.google.com/p/d2-tools/. Conclusions: The k-tuple based sequence signature measures can effectively reveal major groups and gradient variation among metatranscriptomic samples from NGS reads. The dissimilarity measure performs well in all application scenarios and its performance is robust with respect to tuple size and order of the Markov model.
Suggested Citation
Ying Wang & Lin Liu & Lina Chen & Ting Chen & Fengzhu Sun, 2014.
"Comparison of Metatranscriptomic Samples Based on k-Tuple Frequencies,"
PLOS ONE, Public Library of Science, vol. 9(1), pages 1-19, January.
Handle:
RePEc:plo:pone00:0084348
DOI: 10.1371/journal.pone.0084348
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0084348. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.