IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0082784.html
   My bibliography  Save this article

The Importance of Large-Diameter Trees to Forest Structural Heterogeneity

Author

Listed:
  • James A Lutz
  • Andrew J Larson
  • James A Freund
  • Mark E Swanson
  • Kenneth J Bible

Abstract

Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥1 cm dbh, all 1,966 snags ≥10 cm dbh, and all shrub patches ≥2 m2. Basal area of the 26 woody species was 62.18 m2/ha, of which 61.60 m2/ha was trees and 0.58 m2/ha was tall shrubs. Large-diameter trees (≥100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P≤0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses.

Suggested Citation

  • James A Lutz & Andrew J Larson & James A Freund & Mark E Swanson & Kenneth J Bible, 2013. "The Importance of Large-Diameter Trees to Forest Structural Heterogeneity," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-13, December.
  • Handle: RePEc:plo:pone00:0082784
    DOI: 10.1371/journal.pone.0082784
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082784
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0082784&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0082784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James A Lutz & Andrew J Larson & Mark E Swanson & James A Freund, 2012. "Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James A. Lutz & John R. Matchett & Leland W. Tarnay & Douglas F. Smith & Kendall M. L. Becker & Tucker J. Furniss & Matthew L. Brooks, 2017. "Fire and the Distribution and Uncertainty of Carbon Sequestered as Aboveground Tree Biomass in Yosemite and Sequoia & Kings Canyon National Parks," Land, MDPI, vol. 6(1), pages 1-24, January.
    2. Sara J. Germain & James A. Lutz, 2020. "Climate extremes may be more important than climate means when predicting species range shifts," Climatic Change, Springer, vol. 163(1), pages 579-598, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaw, C.H. & Hilger, A.B. & Metsaranta, J. & Kurz, W.A. & Russo, G. & Eichel, F. & Stinson, G. & Smyth, C. & Filiatrault, M., 2014. "Evaluation of simulated estimates of forest ecosystem carbon stocks using ground plot data from Canada's National Forest Inventory," Ecological Modelling, Elsevier, vol. 272(C), pages 323-347.
    2. James A. Lutz & John R. Matchett & Leland W. Tarnay & Douglas F. Smith & Kendall M. L. Becker & Tucker J. Furniss & Matthew L. Brooks, 2017. "Fire and the Distribution and Uncertainty of Carbon Sequestered as Aboveground Tree Biomass in Yosemite and Sequoia & Kings Canyon National Parks," Land, MDPI, vol. 6(1), pages 1-24, January.
    3. Tyson L Swetnam & Christopher D O’Connor & Ann M Lynch, 2016. "Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0082784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.