IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0079722.html
   My bibliography  Save this article

MetAmyl: A METa-Predictor for AMYLoid Proteins

Author

Listed:
  • Mathieu Emily
  • Anthony Talvas
  • Christian Delamarche

Abstract

The aggregation of proteins or peptides in amyloid fibrils is associated with a number of clinical disorders, including Alzheimer's, Huntington's and prion diseases, medullary thyroid cancer, renal and cardiac amyloidosis. Despite extensive studies, the molecular mechanisms underlying the initiation of fibril formation remain largely unknown. Several lines of evidence revealed that short amino-acid segments (hot spots), located in amyloid precursor proteins act as seeds for fibril elongation. Therefore, hot spots are potential targets for diagnostic/therapeutic applications, and a current challenge in bioinformatics is the development of methods to accurately predict hot spots from protein sequences. In this paper, we combined existing methods into a meta-predictor for hot spots prediction, called MetAmyl for METapredictor for AMYLoid proteins. MetAmyl is based on a logistic regression model that aims at weighting predictions from a set of popular algorithms, statistically selected as being the most informative and complementary predictors. We evaluated the performances of MetAmyl through a large scale comparative study based on three independent datasets and thus demonstrated its ability to differentiate between amyloidogenic and non-amyloidogenic polypeptides. Compared to 9 other methods, MetAmyl provides significant improvement in prediction on studied datasets. We further show that MetAmyl is efficient to highlight the effect of point mutations involved in human amyloidosis, so we suggest this program should be a useful complementary tool for the diagnosis of these diseases.

Suggested Citation

  • Mathieu Emily & Anthony Talvas & Christian Delamarche, 2013. "MetAmyl: A METa-Predictor for AMYLoid Proteins," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.
  • Handle: RePEc:plo:pone00:0079722
    DOI: 10.1371/journal.pone.0079722
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079722
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0079722&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0079722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Família & Sarah R Dennison & Alexandre Quintas & David A Phoenix, 2015. "Prediction of Peptide and Protein Propensity for Amyloid Formation," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0079722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.