IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0076214.html
   My bibliography  Save this article

Whatever Works: A Systematic User-Centered Training Protocol to Optimize Brain-Computer Interfacing Individually

Author

Listed:
  • Elisabeth V C Friedrich
  • Christa Neuper
  • Reinhold Scherer

Abstract

This study implemented a systematic user-centered training protocol for a 4-class brain-computer interface (BCI). The goal was to optimize the BCI individually in order to achieve high performance within few sessions for all users. Eight able-bodied volunteers, who were initially naïve to the use of a BCI, participated in 10 sessions over a period of about 5 weeks. In an initial screening session, users were asked to perform the following seven mental tasks while multi-channel EEG was recorded: mental rotation, word association, auditory imagery, mental subtraction, spatial navigation, motor imagery of the left hand and motor imagery of both feet. Out of these seven mental tasks, the best 4-class combination as well as most reactive frequency band (between 8-30 Hz) was selected individually for online control. Classification was based on common spatial patterns and Fisher’s linear discriminant analysis. The number and time of classifier updates varied individually. Selection speed was increased by reducing trial length. To minimize differences in brain activity between sessions with and without feedback, sham feedback was provided in the screening and calibration runs in which usually no real-time feedback is shown. Selected task combinations and frequency ranges differed between users. The tasks that were included in the 4-class combination most often were (1) motor imagery of the left hand (2), one brain-teaser task (word association or mental subtraction) (3), mental rotation task and (4) one more dynamic imagery task (auditory imagery, spatial navigation, imagery of the feet). Participants achieved mean performances over sessions of 44-84% and peak performances in single-sessions of 58-93% in this user-centered 4-class BCI protocol. This protocol is highly adjustable to individual users and thus could increase the percentage of users who can gain and maintain BCI control. A high priority for future work is to examine this protocol with severely disabled users.

Suggested Citation

  • Elisabeth V C Friedrich & Christa Neuper & Reinhold Scherer, 2013. "Whatever Works: A Systematic User-Centered Training Protocol to Optimize Brain-Computer Interfacing Individually," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.
  • Handle: RePEc:plo:pone00:0076214
    DOI: 10.1371/journal.pone.0076214
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076214
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0076214&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0076214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Quiles & Ferran Suay & Gemma Candela & Nayibe Chio & Manuel Jiménez & Leandro Álvarez-Kurogi, 2020. "Low-Cost Robotic Guide Based on a Motor Imagery Brain–Computer Interface for Arm Assisted Rehabilitation," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    2. Reinhold Scherer & Josef Faller & Elisabeth V C Friedrich & Eloy Opisso & Ursula Costa & Andrea Kübler & Gernot R Müller-Putz, 2015. "Individually Adapted Imagery Improves Brain-Computer Interface Performance in End-Users with Disability," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-14, May.
    3. Josef Faller & Reinhold Scherer & Ursula Costa & Eloy Opisso & Josep Medina & Gernot R Müller-Putz, 2014. "A Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0076214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.