IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0075569.html
   My bibliography  Save this article

Community Structure and Multi-Modal Oscillations in Complex Networks

Author

Listed:
  • Henry Dorrian
  • Jon Borresen
  • Martyn Amos

Abstract

In many types of network, the relationship between structure and function is of great significance. We are particularly interested in community structures, which arise in a wide variety of domains. We apply a simple oscillator model to networks with community structures and show that waves of regular oscillation are caused by synchronised clusters of nodes. Moreover, we show that such global oscillations may arise as a direct result of network topology. We also observe that additional modes of oscillation (as detected through frequency analysis) occur in networks with additional levels of topological hierarchy and that such modes may be directly related to network structure. We apply the method in two specific domains (metabolic networks and metropolitan transport) demonstrating the robustness of our results when applied to real world systems. We conclude that (where the distribution of oscillator frequencies and the interactions between them are known to be unimodal) our observations may be applicable to the detection of underlying community structure in networks, shedding further light on the general relationship between structure and function in complex systems.

Suggested Citation

  • Henry Dorrian & Jon Borresen & Martyn Amos, 2013. "Community Structure and Multi-Modal Oscillations in Complex Networks," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
  • Handle: RePEc:plo:pone00:0075569
    DOI: 10.1371/journal.pone.0075569
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075569
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0075569&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0075569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rodrigo Aldecoa & Ignacio Marín, 2011. "Deciphering Network Community Structure by Surprise," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    2. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    3. Wang, Xiao-Hua & Jiao, Li-Cheng & Wu, Jian-She, 2009. "Extracting hierarchical organization of complex networks by dynamics towards synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2975-2986.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrián Ponce-Alvarez & Gustavo Deco & Patric Hagmann & Gian Luca Romani & Dante Mantini & Maurizio Corbetta, 2015. "Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    2. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    3. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    4. Sgrignoli, P. & Agliari, E. & Burioni, R. & Schianchi, A., 2015. "Instability and network effects in innovative markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 260-271.
    5. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    6. Christian F A Negre & Hayato Ushijima-Mwesigwa & Susan M Mniszewski, 2020. "Detecting multiple communities using quantum annealing on the D-Wave system," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-14, February.
    7. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    8. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    9. Aslam, Faheem & Aziz, Saqib & Nguyen, Duc Khuong & Mughal, Khurrum S. & Khan, Maaz, 2020. "On the efficiency of foreign exchange markets in times of the COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    10. Semi Min & Juyong Park, 2019. "Modeling narrative structure and dynamics with networks, sentiment analysis, and topic modeling," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-20, December.
    11. Jiang, Jingchi & Zheng, Jichuan & Zhao, Chao & Su, Jia & Guan, Yi & Yu, Qiubin, 2016. "Clinical-decision support based on medical literature: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 42-54.
    12. Gerhardt, Günther J.L. & Lemke, Ney & Corso, Gilberto, 2006. "Network clustering coefficient approach to DNA sequence analysis," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 1037-1045.
    13. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    14. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    15. Liu, X. & Murata, T., 2010. "Advanced modularity-specialized label propagation algorithm for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1493-1500.
    16. Wen, Xiangxi & Tu, Congliang & Wu, Minggong, 2018. "Node importance evaluation in aviation network based on “No Return” node deletion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 546-559.
    17. Lawford, Steve & Mehmeti, Yll, 2020. "Cliques and a new measure of clustering: With application to U.S. domestic airlines," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    18. J. J. Esquivel-Gómez & J. G. Barajas-Ramírez, 2024. "Rapid disease spread on dense networks with power-law topology," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(5), pages 1-10, May.
    19. Wu, Jianshe & Wang, Xiaohua & Jiao, Licheng, 2012. "Synchronization on overlapping community network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 508-514.
    20. Wang, Huan & Xu, Chuan-Yun & Hu, Jing-Bo & Cao, Ke-Fei, 2014. "A complex network analysis of hypertension-related genes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 166-176.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0075569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.