IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0066575.html
   My bibliography  Save this article

Quid Pro Quo: A Mechanism for Fair Collaboration in Networked Systems

Author

Listed:
  • Agustín Santos
  • Antonio Fernández Anta
  • Luis López Fernández

Abstract

Collaboration may be understood as the execution of coordinated tasks (in the most general sense) by groups of users, who cooperate for achieving a common goal. Collaboration is a fundamental assumption and requirement for the correct operation of many communication systems. The main challenge when creating collaborative systems in a decentralized manner is dealing with the fact that users may behave in selfish ways, trying to obtain the benefits of the tasks but without participating in their execution. In this context, Game Theory has been instrumental to model collaborative systems and the task allocation problem, and to design mechanisms for optimal allocation of tasks. In this paper, we revise the classical assumptions of these models and propose a new approach to this problem. First, we establish a system model based on heterogenous nodes (users, players), and propose a basic distributed mechanism so that, when a new task appears, it is assigned to the most suitable node. The classical technique for compensating a node that executes a task is the use of payments (which in most networks are hard or impossible to implement). Instead, we propose a distributed mechanism for the optimal allocation of tasks without payments. We prove this mechanism to be robust evenevent in the presence of independent selfish or rationally limited players. Additionally, our model is based on very weak assumptions, which makes the proposed mechanisms susceptible to be implemented in networked systems (e.g., the Internet).

Suggested Citation

  • Agustín Santos & Antonio Fernández Anta & Luis López Fernández, 2013. "Quid Pro Quo: A Mechanism for Fair Collaboration in Networked Systems," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-15, September.
  • Handle: RePEc:plo:pone00:0066575
    DOI: 10.1371/journal.pone.0066575
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066575
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0066575&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0066575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bell, Michael G. H., 2000. "A game theory approach to measuring the performance reliability of transport networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(6), pages 533-545, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evgenia Christoforou & Antonio Fernández Anta & Agustín Santos, 2016. "A Mechanism for Fair Distribution of Resources without Payments," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    2. Hadas, Yuval & Gnecco, Giorgio & Sanguineti, Marcello, 2017. "An approach to transportation network analysis via transferable utility games," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 120-143.
    3. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    4. Ng, ManWo & Waller, S. Travis, 2010. "A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1202-1219, December.
    5. Szeto, W.Y. & Farahani, R.Z. & Sumalee, Agachai, 2017. "Link-based multi-class hazmat routing-scheduling problem: A multiple demon approach," European Journal of Operational Research, Elsevier, vol. 261(1), pages 337-354.
    6. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    7. Alan T. Murray & Timothy C. Matisziw & Tony H. Grubesic, 2008. "A Methodological Overview of Network Vulnerability Analysis," Growth and Change, Wiley Blackwell, vol. 39(4), pages 573-592, December.
    8. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    9. Zis, Thalis P.V., 2021. "A game theoretic approach on improving sulphur compliance," Transport Policy, Elsevier, vol. 114(C), pages 127-137.
    10. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    11. Sjoerd van der Spoel & Chintan Amrit & Jos van Hillegersberg, 2017. "Predictive analytics for truck arrival time estimation: a field study at a European distribution centre," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5062-5078, September.
    12. Michael W. Levin & Melissa Duell & S. Travis Waller, 2020. "Arrival Time Reliability in Strategic User Equilibrium," Networks and Spatial Economics, Springer, vol. 20(3), pages 803-831, September.
    13. Pablo E. Achurra-Gonzalez & Panagiotis Angeloudis & Nils Goldbeck & Daniel J. Graham & Konstantinos Zavitsas & Marc E. J. Stettler, 2019. "Evaluation of port disruption impacts in the global liner shipping network," Journal of Shipping and Trade, Springer, vol. 4(1), pages 1-21, December.
    14. Nima Haghighi & S. Kiavash Fayyaz & Xiaoyue Cathy Liu & Tony H. Grubesic & Ran Wei, 2018. "A Multi-Scenario Probabilistic Simulation Approach for Critical Transportation Network Risk Assessment," Networks and Spatial Economics, Springer, vol. 18(1), pages 181-203, March.
    15. Sugiura, Satoshi & Chen, Anthony, 2021. "Vulnerability analysis of cut-capacity structure and OD demand using Gomory-Hu tree method," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 111-127.
    16. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    17. Prakash, A. Arun & Seshadri, Ravi & Srinivasan, Karthik K., 2018. "A consistent reliability-based user-equilibrium problem with risk-averse users and endogenous travel time correlations: Formulation and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 171-198.
    18. Wang, Hua & Meng, Qiang & Zhang, Xiaoning, 2014. "Game-theoretical models for competition analysis in a new emerging liner container shipping market," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 201-227.
    19. Wang, Judith Y.T. & Ehrgott, Matthias & Chen, Anthony, 2014. "A bi-objective user equilibrium model of travel time reliability in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 4-15.
    20. Chen, Anthony & Zhou, Zhong, 2010. "The [alpha]-reliable mean-excess traffic equilibrium model with stochastic travel times," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 493-513, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0066575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.