IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0065245.html
   My bibliography  Save this article

A Unified Framework for Association Analysis with Multiple Related Phenotypes

Author

Listed:
  • Matthew Stephens

Abstract

We consider the problem of assessing associations between multiple related outcome variables, and a single explanatory variable of interest. This problem arises in many settings, including genetic association studies, where the explanatory variable is genotype at a genetic variant. We outline a framework for conducting this type of analysis, based on Bayesian model comparison and model averaging for multivariate regressions. This framework unifies several common approaches to this problem, and includes both standard univariate and standard multivariate association tests as special cases. The framework also unifies the problems of testing for associations and explaining associations – that is, identifying which outcome variables are associated with genotype. This provides an alternative to the usual, but conceptually unsatisfying, approach of resorting to univariate tests when explaining and interpreting significant multivariate findings. The method is computationally tractable genome-wide for modest numbers of phenotypes (e.g. 5–10), and can be applied to summary data, without access to raw genotype and phenotype data. We illustrate the methods on both simulated examples, and to a genome-wide association study of blood lipid traits where we identify 18 potential novel genetic associations that were not identified by univariate analyses of the same data.

Suggested Citation

  • Matthew Stephens, 2013. "A Unified Framework for Association Analysis with Multiple Related Phenotypes," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-19, July.
  • Handle: RePEc:plo:pone00:0065245
    DOI: 10.1371/journal.pone.0065245
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065245
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0065245&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0065245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lei Zhang & Yu-Fang Pei & Jian Li & Christopher J Papasian & Hong-Wen Deng, 2009. "Univariate/Multivariate Genome-Wide Association Scans Using Data from Families and Unrelated Samples," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-12, August.
    2. Enrico Petretto & Leonardo Bottolo & Sarah R Langley & Matthias Heinig & Chris McDermott-Roe & Rizwan Sarwar & Michal Pravenec & Norbert Hübner & Timothy J Aitman & Stuart A Cook & Sylvia Richardson, 2010. "New Insights into the Genetic Control of Gene Expression using a Bayesian Multi-tissue Approach," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenchuan Wang & Qiuying Sha & Shurong Fang & Kui Zhang & Shuanglin Zhang, 2018. "Testing an optimally weighted combination of common and/or rare variants with multiple traits," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-16, July.
    2. Zhenchuan Wang & Qiuying Sha & Shuanglin Zhang, 2016. "Joint Analysis of Multiple Traits Using "Optimal" Maximum Heritability Test," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-12, March.
    3. Jianjun Zhang & Qiuying Sha & Guanfu Liu & Xuexia Wang, 2019. "A gene based approach to test genetic association based on an optimally weighted combination of multiple traits," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-17, August.
    4. Gao Wang & Abhishek Sarkar & Peter Carbonetto & Matthew Stephens, 2020. "A simple new approach to variable selection in regression, with application to genetic fine mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1273-1300, December.
    5. Heejung Shim & Daniel I Chasman & Joshua D Smith & Samia Mora & Paul M Ridker & Deborah A Nickerson & Ronald M Krauss & Matthew Stephens, 2015. "A Multivariate Genome-Wide Association Analysis of 10 LDL Subfractions, and Their Response to Statin Treatment, in 1868 Caucasians," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-20, April.
    6. Dennis Meer & Oleksandr Frei & Tobias Kaufmann & Alexey A. Shadrin & Anna Devor & Olav B. Smeland & Wesley K. Thompson & Chun Chieh Fan & Dominic Holland & Lars T. Westlye & Ole A. Andreassen & Anders, 2020. "Understanding the genetic determinants of the brain with MOSTest," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. Nan Lin & Yun Zhu & Ruzong Fan & Momiao Xiong, 2017. "A quadratically regularized functional canonical correlation analysis for identifying the global structure of pleiotropy with NGS data," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-33, October.
    8. Zihuai He & Erin K Payne & Bhramar Mukherjee & Seunggeun Lee & Jennifer A Smith & Erin B Ware & Brisa N Sánchez & Teresa E Seeman & Sharon L R Kardia & Ana V Diez Roux, 2015. "Association between Stress Response Genes and Features of Diurnal Cortisol Curves in the Multi-Ethnic Study of Atherosclerosis: A New Multi-Phenotype Approach for Gene-Based Association Tests," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heejung Shim & Daniel I Chasman & Joshua D Smith & Samia Mora & Paul M Ridker & Deborah A Nickerson & Ronald M Krauss & Matthew Stephens, 2015. "A Multivariate Genome-Wide Association Analysis of 10 LDL Subfractions, and Their Response to Statin Treatment, in 1868 Caucasians," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-20, April.
    2. Leonardo Bottolo & Marco Banterle & Sylvia Richardson & Mika Ala‐Korpela & Marjo‐Riitta Järvelin & Alex Lewin, 2021. "A computationally efficient Bayesian seemingly unrelated regressions model for high‐dimensional quantitative trait loci discovery," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 886-908, August.
    3. Liquet, Benoît & Bottolo, Leonardo & Campanella, Gianluca & Richardson, Sylvia & Chadeau-Hyam, Marc, 2016. "R2GUESS: A Graphics Processing Unit-Based R Package for Bayesian Variable Selection Regression of Multivariate Responses," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i02).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0065245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.