IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0064657.html
   My bibliography  Save this article

Model-Selection-Based Approach for Calculating Cellular Multiplicity of Infection during Virus Colonization of Multi-Cellular Hosts

Author

Listed:
  • Mark P Zwart
  • Nicolas Tromas
  • Santiago F Elena

Abstract

The cellular multiplicity of infection (MOI) is a key parameter for describing the interactions between virions and cells, predicting the dynamics of mixed-genotype infections, and understanding virus evolution. Two recent studies have reported in vivo MOI estimates for Tobacco mosaic virus (TMV) and Cauliflower mosaic virus (CaMV), using sophisticated approaches to measure the distribution of two virus variants over host cells. Although the experimental approaches were similar, the studies employed different definitions of MOI and estimation methods. Here, new model-selection-based methods for calculating MOI were developed. Seven alternative models for predicting MOI were formulated that incorporate an increasing number of parameters. For both datasets the best-supported model included spatial segregation of virus variants over time, and to a lesser extent aggregation of virus-infected cells was also implicated. Three methods for MOI estimation were then compared: the two previously reported methods and the best-supported model. For CaMV data, all three methods gave comparable results. For TMV data, the previously reported methods both predicted low MOI values (range: 1.04–1.23) over time, whereas the best-supported model predicted a wider range of MOI values (range: 1.01–2.10) and an increase in MOI over time. Model selection can therefore identify suitable alternative MOI models and suggest key mechanisms affecting the frequency of coinfected cells. For the TMV data, this leads to appreciable differences in estimated MOI values.

Suggested Citation

  • Mark P Zwart & Nicolas Tromas & Santiago F Elena, 2013. "Model-Selection-Based Approach for Calculating Cellular Multiplicity of Infection during Virus Colonization of Multi-Cellular Hosts," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-9, May.
  • Handle: RePEc:plo:pone00:0064657
    DOI: 10.1371/journal.pone.0064657
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064657
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0064657&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0064657?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wopke van der Werf & Lia Hemerik & Just M Vlak & Mark P Zwart, 2011. "Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0064657. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.