IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0062624.html
   My bibliography  Save this article

Extracting the Information Backbone in Online System

Author

Listed:
  • Qian-Ming Zhang
  • An Zeng
  • Ming-Sheng Shang

Abstract

Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such “less can be more” feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency.

Suggested Citation

  • Qian-Ming Zhang & An Zeng & Ming-Sheng Shang, 2013. "Extracting the Information Backbone in Online System," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-7, May.
  • Handle: RePEc:plo:pone00:0062624
    DOI: 10.1371/journal.pone.0062624
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062624
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0062624&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0062624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Wen-Jun & Guo, Qiang & Liu, Jian-Guo, 2014. "Improved hybrid information filtering based on limited time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 192-197.
    2. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    3. Liu, Xiao-Lu & Guo, Qiang & Hou, Lei & Cheng, Can & Liu, Jian-Guo, 2015. "Ranking online quality and reputation via the user activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 629-636.
    4. Liu, Xiao-Lu & Liu, Jian-Guo & Yang, Kai & Guo, Qiang & Han, Jing-Ti, 2017. "Identifying online user reputation of user–object bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 508-516.
    5. Hao Liao & An Zeng & Rui Xiao & Zhuo-Ming Ren & Duan-Bing Chen & Yi-Cheng Zhang, 2014. "Ranking Reputation and Quality in Online Rating Systems," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    6. Dai, Lu & Guo, Qiang & Liu, Xiao-Lu & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Identifying online user reputation in terms of user preference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 403-409.
    7. Mingxin Gan, 2014. "Walking on a User Similarity Network towards Personalized Recommendations," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0062624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.