IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0060586.html
   My bibliography  Save this article

“Conjugate Channeling” Effect in Dislocation Core Diffusion: Carbon Transport in Dislocated BCC Iron

Author

Listed:
  • Akio Ishii
  • Ju Li
  • Shigenobu Ogata

Abstract

Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction , but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. is a function of the Burgers vector b, but not , thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.

Suggested Citation

  • Akio Ishii & Ju Li & Shigenobu Ogata, 2013. "“Conjugate Channeling” Effect in Dislocation Core Diffusion: Carbon Transport in Dislocated BCC Iron," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-7, April.
  • Handle: RePEc:plo:pone00:0060586
    DOI: 10.1371/journal.pone.0060586
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0060586
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0060586&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0060586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kaori Ito & Cornelius T. Moynihan & C. Austen Angell, 1999. "Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water," Nature, Nature, vol. 398(6727), pages 492-495, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaneta Wojnarowska & Shinian Cheng & Beibei Yao & Malgorzata Swadzba-Kwasny & Shannon McLaughlin & Anne McGrogan & Yoan Delavoux & Marian Paluch, 2022. "Pressure-induced liquid-liquid transition in a family of ionic materials," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Wen-Long Xue & Pascal Kolodzeiski & Hanna Aucharova & Suresh Vasa & Athanasios Koutsianos & Roman Pallach & Jianbo Song & Louis Frentzel-Beyme & Rasmus Linser & Sebastian Henke, 2024. "Highly porous metal-organic framework liquids and glasses via a solvent-assisted linker exchange strategy of ZIF-8," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Wilding, Martin C. & McMillan, Paul F. & Navrotsky, Alexandra, 2002. "Thermodynamic and structural aspects of the polyamorphic transition in yttrium and other rare-earth aluminate liquids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 379-390.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0060586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.