IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0059847.html
   My bibliography  Save this article

Do Changes in the Pace of Events Affect One-Off Judgments of Duration?

Author

Listed:
  • Hannah M Darlow
  • Alexandra S Dylman
  • Ana I Gheorghiu
  • William J Matthews

Abstract

Five experiments examined whether changes in the pace of external events influence people’s judgments of duration. In Experiments 1a–1c, participants heard pieces of music whose tempo accelerated, decelerated, or remained constant. In Experiment 2, participants completed a visuo-motor task in which the rate of stimulus presentation accelerated, decelerated, or remained constant. In Experiment 3, participants completed a reading task in which facts appeared on-screen at accelerating, decelerating, or constant rates. In all experiments, the physical duration of the to-be-judged interval was the same across conditions. We found no significant effects of temporal structure on duration judgments in any of the experiments, either when participants knew that a time estimate would be required (prospective judgments) or when they did not (retrospective judgments). These results provide a starting point for the investigation of how temporal structure affects one-off judgments of duration like those typically made in natural settings.

Suggested Citation

  • Hannah M Darlow & Alexandra S Dylman & Ana I Gheorghiu & William J Matthews, 2013. "Do Changes in the Pace of Events Affect One-Off Judgments of Duration?," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
  • Handle: RePEc:plo:pone00:0059847
    DOI: 10.1371/journal.pone.0059847
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059847
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0059847&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0059847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vani Pariyadath & David M Eagleman, 2012. "Subjective Duration Distortions Mirror Neural Repetition Suppression," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-4, December.
    2. Ruud Wetzels & Raoul P. P. P. Grasman & Eric-Jan Wagenmakers, 2012. "A Default Bayesian Hypothesis Test for ANOVA Designs," The American Statistician, Taylor & Francis Journals, vol. 66(2), pages 104-111, May.
    3. repec:cup:judgdm:v:6:y:2011:i:8:p:843-856 is not listed on IDEAS
    4. Liang, Feng & Paulo, Rui & Molina, German & Clyde, Merlise A. & Berger, Jim O., 2008. "Mixtures of g Priors for Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 410-423, March.
    5. Simon Tobin & Nicolas Bisson & Simon Grondin, 2010. "An Ecological Approach to Prospective and Retrospective Timing of Long Durations: A Study Involving Gamers," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-9, February.
    6. Viechtbauer, Wolfgang, 2010. "Conducting Meta-Analyses in R with the metafor Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i03).
    7. repec:cup:judgdm:v:4:y:2009:i:1:p:64-81 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Wang & Guangying Liu, 2016. "A Simple Two-Sample Bayesian t -Test for Hypothesis Testing," The American Statistician, Taylor & Francis Journals, vol. 70(2), pages 195-201, May.
    2. Scott D. Goddard & Valen E. Johnson, 2016. "Restricted most powerful Bayesian tests for linear models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1162-1177, December.
    3. Bart Verkuil & Serpil Atasayi & Marc L Molendijk, 2015. "Workplace Bullying and Mental Health: A Meta-Analysis on Cross-Sectional and Longitudinal Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    4. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. repec:cup:judgdm:v:15:y:2020:i:6:p:972-988 is not listed on IDEAS
    6. Jonas Schmidt & Tammo H. A. Bijmolt, 2020. "Accurately measuring willingness to pay for consumer goods: a meta-analysis of the hypothetical bias," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 499-518, May.
    7. Righi, Simone & Pancotto, Francesca & Giardini, Francesca, 2022. "Cooperation, fairness and civic capital after an earthquake: Evidence from two Italian regions," SocArXiv n49hv_v1, Center for Open Science.
    8. Anna Sokolova, 2023. "Marginal Propensity to Consume and Unemployment: a Meta-analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 813-846, December.
    9. Mario Herberz & Tobias Brosch & Ulf J. J. Hahnel, 2020. "Kilo what? Default units increase value sensitivity in joint evaluations of energy efficiency," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(6), pages 972-988, November.
    10. Maier, Maximilian & VanderWeele, Tyler J. & Mathur, Maya B, 2021. "Using Selection Models to Assess Sensitivity to Publication Bias: A Tutorial and Call for More Routine Use," MetaArXiv tp45u_v1, Center for Open Science.
    11. Piers Steel & Sjoerd Beugelsdijk & Herman Aguinis, 2021. "The anatomy of an award-winning meta-analysis: Recommendations for authors, reviewers, and readers of meta-analytic reviews," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(1), pages 23-44, February.
    12. Hasan, Iftekhar & Horvath, Roman & Mares, Jan, 2020. "Finance and wealth inequality," Journal of International Money and Finance, Elsevier, vol. 108(C).
    13. Galharret, Jean-Michel & Philippe, Anne, 2023. "Bayesian analysis for mediation and moderation using g−priors," Econometrics and Statistics, Elsevier, vol. 27(C), pages 161-172.
    14. Philipp Piribauer & Jesús Crespo Cuaresma, 2016. "Bayesian Variable Selection in Spatial Autoregressive Models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 11(4), pages 457-479, October.
    15. Ley, Eduardo & Steel, Mark F. J., 2007. "On the effect of prior assumptions in Bayesian model averaging with applications to growth regression," Policy Research Working Paper Series 4238, The World Bank.
    16. Augusteijn, Hilde Elisabeth Maria & van Aert, Robbie Cornelis Maria & van Assen, Marcel A. L. M., 2021. "Posterior Probabilities of Effect Sizes and Heterogeneity in Meta-Analysis: An Intuitive Approach of Dealing with Publication Bias," OSF Preprints avkgj, Center for Open Science.
    17. Forte, Anabel & Peiró-Palomino, Jesús & Tortosa-Ausina, Emili, 2015. "Does social capital matter for European regional growth?," European Economic Review, Elsevier, vol. 77(C), pages 47-64.
    18. Aart Kraay & Norikazu Tawara, 2013. "Can specific policy indicators identify reform priorities?," Journal of Economic Growth, Springer, vol. 18(3), pages 253-283, September.
    19. Georgiou, George K. & Guo, Kan & Naveenkumar, Nithya & Vieira, Ana Paula Alves & Das, J.P., 2020. "PASS theory of intelligence and academic achievement: A meta-analytic review," Intelligence, Elsevier, vol. 79(C).
    20. Stephan Kambach & Ingolf Kühn & Bastien Castagneyrol & Helge Bruelheide, 2016. "The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
    21. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0059847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.