IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0058779.html
   My bibliography  Save this article

Visualizing the Topical Structure of the Medical Sciences: A Self-Organizing Map Approach

Author

Listed:
  • André Skupin
  • Joseph R Biberstine
  • Katy Börner

Abstract

Background: We implement a high-resolution visualization of the medical knowledge domain using the self-organizing map (SOM) method, based on a corpus of over two million publications. While self-organizing maps have been used for document visualization for some time, (1) little is known about how to deal with truly large document collections in conjunction with a large number of SOM neurons, (2) post-training geometric and semiotic transformations of the SOM tend to be limited, and (3) no user studies have been conducted with domain experts to validate the utility and readability of the resulting visualizations. Our study makes key contributions to all of these issues. Methodology: Documents extracted from Medline and Scopus are analyzed on the basis of indexer-assigned MeSH terms. Initial dimensionality is reduced to include only the top 10% most frequent terms and the resulting document vectors are then used to train a large SOM consisting of over 75,000 neurons. The resulting two-dimensional model of the high-dimensional input space is then transformed into a large-format map by using geographic information system (GIS) techniques and cartographic design principles. This map is then annotated and evaluated by ten experts stemming from the biomedical and other domains. Conclusions: Study results demonstrate that it is possible to transform a very large document corpus into a map that is visually engaging and conceptually stimulating to subject experts from both inside and outside of the particular knowledge domain. The challenges of dealing with a truly large corpus come to the fore and require embracing parallelization and use of supercomputing resources to solve otherwise intractable computational tasks. Among the envisaged future efforts are the creation of a highly interactive interface and the elaboration of the notion of this map of medicine acting as a base map, onto which other knowledge artifacts could be overlaid.

Suggested Citation

  • André Skupin & Joseph R Biberstine & Katy Börner, 2013. "Visualizing the Topical Structure of the Medical Sciences: A Self-Organizing Map Approach," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-16, March.
  • Handle: RePEc:plo:pone00:0058779
    DOI: 10.1371/journal.pone.0058779
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058779
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0058779&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0058779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johan Bollen & Herbert Van de Sompel & Aric Hagberg & Luis Bettencourt & Ryan Chute & Marko A Rodriguez & Lyudmila Balakireva, 2009. "Clickstream Data Yields High-Resolution Maps of Science," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-11, March.
    2. Ismael Rafols & Alan L. Porter & Loet Leydesdorff, 2010. "Science overlay maps: A new tool for research policy and library management," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1871-1887, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel R. Guevara & Dominik Hartmann & Manuel Aristarán & Marcelo Mendoza & César A. Hidalgo, 2016. "The research space: using career paths to predict the evolution of the research output of individuals, institutions, and nations," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1695-1709, December.
    2. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    3. Leydesdorff, Loet & Rafols, Ismael, 2011. "Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations," Journal of Informetrics, Elsevier, vol. 5(1), pages 87-100.
    4. Kevin W Boyack & Mei-Ching Chen & George Chacko, 2014. "Characterization of the Peer Review Network at the Center for Scientific Review, National Institutes of Health," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-13, August.
    5. John Hudson, 2017. "Identifying economics’ place amongst academic disciplines: a science or a social science?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 735-750, November.
    6. Andrea Bonaccorsi & Filippo Chiarello & Gualtiero Fantoni, 2021. "Impact for whom? Mapping the users of public research with lexicon-based text mining," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1745-1774, February.
    7. Stephen Carley & Alan L. Porter, 2012. "A forward diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 407-427, February.
    8. Yanto Chandra, 2018. "Mapping the evolution of entrepreneurship as a field of research (1990–2013): A scientometric analysis," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-24, January.
    9. Diego Chavarro & Puay Tang & Ismael Rafols, 2014. "Interdisciplinarity and research on local issues: evidence from a developing country," Research Evaluation, Oxford University Press, vol. 23(3), pages 195-209.
    10. Tuba Bircan & Almila Alkim Akdag Salah, 2022. "A Bibliometric Analysis of the Use of Artificial Intelligence Technologies for Social Sciences," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    11. Shiji Chen & Clément Arsenault & Yves Gingras & Vincent Larivière, 2015. "Exploring the interdisciplinary evolution of a discipline: the case of Biochemistry and Molecular Biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1307-1323, February.
    12. Seongkyoon Jeong & Jong-Chan Kim & Jae Young Choi, 2015. "Technology convergence: What developmental stage are we in?," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 841-871, September.
    13. Lin Zhang & Wenjing Zhao & Beibei Sun & Ying Huang & Wolfgang Glänzel, 2020. "How scientific research reacts to international public health emergencies: a global analysis of response patterns," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 747-773, July.
    14. Önder, Ali Sina & Schweitzer, Sascha & Yilmazkuday, Hakan, 2021. "Specialization, field distance, and quality in economists’ collaborations," Journal of Informetrics, Elsevier, vol. 15(4).
    15. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    16. Chris W. Belter, 2013. "A bibliometric analysis of NOAA’s Office of Ocean Exploration and Research," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 629-644, May.
    17. Sándor Soós & Zsófia Vida & András Schubert, 2018. "Long-term trends in the multidisciplinarity of some typical natural and social sciences, and its implications on the SSH versus STM distinction," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 795-822, March.
    18. Ran Xu & Navid Ghaffarzadegan, 2018. "Neuroscience bridging scientific disciplines in health: Who builds the bridge, who pays for it?," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 1183-1204, November.
    19. Pitambar Gautam & Ryuichi Yanagiya, 2012. "Reflection of cross-disciplinary research at Creative Research Institution (Hokkaido University) in the Web of Science database: appraisal and visualization using bibliometry," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(1), pages 101-111, October.
    20. Paul Donner, 2021. "Validation of the Astro dataset clustering solutions with external data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1619-1645, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0058779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.