IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0058368.html
   My bibliography  Save this article

t-LSE: A Novel Robust Geometric Approach for Modeling Protein-Protein Interaction Networks

Author

Listed:
  • Lin Zhu
  • Zhu-Hong You
  • De-Shuang Huang
  • Bing Wang

Abstract

Protein-protein interaction (PPI) networks provide insights into understanding of biological processes, function and the underlying complex evolutionary mechanisms of the cell. Modeling PPI network is an important and fundamental problem in system biology, where it is still of major concern to find a better fitting model that requires less structural assumptions and is more robust against the large fraction of noisy PPIs. In this paper, we propose a new approach called t-logistic semantic embedding (t-LSE) to model PPI networks. t-LSE tries to adaptively learn a metric embedding under the simple geometric assumption of PPI networks, and a non-convex cost function was adopted to deal with the noise in PPI networks. The experimental results show the superiority of the fit of t-LSE over other network models to PPI data. Furthermore, the robust loss function adopted here leads to big improvements for dealing with the noise in PPI network. The proposed model could thus facilitate further graph-based studies of PPIs and may help infer the hidden underlying biological knowledge. The Matlab code implementing the proposed method is freely available from the web site: http://home.ustc.edu.cn/~yzh33108/PPIModel.htm.

Suggested Citation

  • Lin Zhu & Zhu-Hong You & De-Shuang Huang & Bing Wang, 2013. "t-LSE: A Novel Robust Geometric Approach for Modeling Protein-Protein Interaction Networks," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-13, April.
  • Handle: RePEc:plo:pone00:0058368
    DOI: 10.1371/journal.pone.0058368
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058368
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0058368&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0058368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Yuan & Chang-An Yuan & De-Shuang Huang, 2017. "FAACOSE: A Fast Adaptive Ant Colony Optimization Algorithm for Detecting SNP Epistasis," Complexity, Hindawi, vol. 2017, pages 1-10, September.
    2. Zhen Shen & You-Hua Zhang & Kyungsook Han & Asoke K. Nandi & Barry Honig & De-Shuang Huang, 2017. "miRNA-Disease Association Prediction with Collaborative Matrix Factorization," Complexity, Hindawi, vol. 2017, pages 1-9, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0058368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.