Author
Listed:
- David Tamborero
- Nuria Lopez-Bigas
- Abel Gonzalez-Perez
Abstract
A well-established approach for detecting genes involved in tumorigenesis due to copy number alterations (CNAs) is to assess the recurrence of the alteration across multiple samples. Expression data can be used to filter this list of candidates by assessing whether the gene expression significantly differs between tumors depending on the copy number status. A drawback of this approach is that it may fail to detect low-recurrent drivers. Furthermore, this analysis does not provide information about expression changes for each gene as compared to the whole data set and does not take into consideration the expression of normal samples. Here we describe a novel method (Oncodrive-CIS) aimed at ranking genes according to the expression impact caused by the CNAs. The rationale of Oncodrive-CIS is based on the hypothesis that genes involved in cancer due to copy number changes are more biased towards misregulation than are bystanders. Moreover, to gain insight into the expression changes caused by gene dosage, the expression of samples with CNAs is compared to that of tumor samples with diploid genotype and also to that of normal samples. Oncodrive-CIS demonstrated better performance in detecting putative associations between copy-number and expression in simulated data sets as compared to other methods aimed to this purpose, and picked up genes likely to be related with tumorigenesis when applied to real cancer samples. In summary, Oncodrive-CIS provides a statistical framework to evaluate the in cis effect of CNAs that may be useful to elucidate the role of these aberrations in driving oncogenesis. An implementation of this method and the corresponding user guide are freely available at http://bg.upf.edu/oncodrivecis.
Suggested Citation
David Tamborero & Nuria Lopez-Bigas & Abel Gonzalez-Perez, 2013.
"Oncodrive-CIS: A Method to Reveal Likely Driver Genes Based on the Impact of Their Copy Number Changes on Expression,"
PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
Handle:
RePEc:plo:pone00:0055489
DOI: 10.1371/journal.pone.0055489
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0055489. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.