IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0055371.html
   My bibliography  Save this article

Modeling Social Network Topologies in Elementary Schools

Author

Listed:
  • Rodrigo Huerta-Quintanilla
  • Efrain Canto-Lugo
  • Dolores Viga-de Alva

Abstract

Complex networks are used to describe interactions in many real world systems, including economic, biological and social systems. An analysis was done of inter-student friendship, enmity and kinship relationships at three elementary schools by building social networks of these relationships and studying their properties. Friendship network measurements were similar between schools and produced a Poisson topology with a high clustering index. Enmity network measurements were also similar between schools and produced a power law topology. Spatial confinement and the sense of belonging to a social group played vital roles in shaping these networks. Two models were developed which generate complex friendship and enmity networks that reproduce the properties observed at the three studied elementary schools.

Suggested Citation

  • Rodrigo Huerta-Quintanilla & Efrain Canto-Lugo & Dolores Viga-de Alva, 2013. "Modeling Social Network Topologies in Elementary Schools," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
  • Handle: RePEc:plo:pone00:0055371
    DOI: 10.1371/journal.pone.0055371
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055371
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0055371&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0055371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jackson, Matthew O. & Wolinsky, Asher, 1996. "A Strategic Model of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 71(1), pages 44-74, October.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    3. Coren L. Apicella & Frank W. Marlowe & James H. Fowler & Nicholas A. Christakis, 2012. "Social networks and cooperation in hunter-gatherers," Nature, Nature, vol. 481(7382), pages 497-501, January.
    4. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    5. Sergi Lozano & Alex Arenas & Angel Sánchez, 2008. "Mesoscopic Structure Conditions the Emergence of Cooperation on Social Networks," PLOS ONE, Public Library of Science, vol. 3(4), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krawczyk, Małgorzata J. & del Castillo-Mussot, Marcelo & Hernández-Ramírez, Eric & Naumis, Gerardo G. & Kułakowski, Krzysztof, 2015. "Heider balance, asymmetric ties, and gender segregation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 66-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew O. Jackson & Brian W. Rogers, 2005. "Search in the Formation of Large Networks: How Random are Socially Generated Networks?," Game Theory and Information 0503005, University Library of Munich, Germany.
    2. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    3. Bryan S. Graham, 2017. "An econometric model of network formation with degree heterogeneity," CeMMAP working papers 08/17, Institute for Fiscal Studies.
    4. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    5. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    6. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    7. Vigier, A., 2008. "Globalization, Education, and the Topology of Social Networks," Cambridge Working Papers in Economics 0851, Faculty of Economics, University of Cambridge.
    8. Zhang, Zhongzhi & Rong, Lili & Comellas, Francesc, 2006. "High-dimensional random Apollonian networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 610-618.
    9. Hellmann, Tim & Staudigl, Mathias, 2014. "Evolution of social networks," European Journal of Operational Research, Elsevier, vol. 234(3), pages 583-596.
    10. Bryan S. Graham, 2019. "Network Data," Papers 1912.06346, arXiv.org.
    11. Rendón de la Torre, Stephanie & Kalda, Jaan & Kitt, Robert & Engelbrecht, Jüri, 2016. "On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 18-27.
    12. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    13. Sanjeev Goyal & Marco J. van der Leij & José Luis Moraga-Gonzalez, 2006. "Economics: An Emerging Small World," Journal of Political Economy, University of Chicago Press, vol. 114(2), pages 403-432, April.
    14. Zheng, Xiaolong & Zeng, Daniel & Li, Huiqian & Wang, Feiyue, 2008. "Analyzing open-source software systems as complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6190-6200.
    15. Bryan S. Graham, 2017. "An Econometric Model of Network Formation With Degree Heterogeneity," Econometrica, Econometric Society, vol. 85, pages 1033-1063, July.
    16. Andrin Pelican & Bryan S. Graham, 2020. "An Optimal Test for Strategic Interaction in Social and Economic Network Formation between Heterogeneous Agents," NBER Working Papers 27793, National Bureau of Economic Research, Inc.
    17. Pandey, Pradumn Kumar & Adhikari, Bibhas, 2015. "Context dependent preferential attachment model for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 499-508.
    18. Ikeda, N., 2007. "Network formed by traces of random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 701-713.
    19. Çavuşoğlu, Abdullah & Türker, İlker, 2013. "Scientific collaboration network of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 9-18.
    20. Omar A Guerrero & Robert L Axtell, 2013. "Employment Growth through Labor Flow Networks," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-12, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0055371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.