IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0054802.html
   My bibliography  Save this article

The Flux-Based PIN Allocation Mechanism Can Generate Either Canalyzed or Diffuse Distribution Patterns Depending on Geometry and Boundary Conditions

Author

Listed:
  • Michael Luke Walker
  • Etienne Farcot
  • Jan Traas
  • Christophe Godin

Abstract

Growth and morphogenesis in plants require controlled transport of the plant hormone auxin. An important participant is the auxin effluxing protein PIN, whose polarized subcellular localization allows it to effectively transport auxin large distances through tissues. The flux-based model, in which auxin flux through a wall stimulates PIN allocation to that wall, is a dominant contender among models determining where and in what quantity PIN is allocated to cell walls. In this paper we characterise the behaviour of flux-based PIN allocation models in various tissues of the shoot apical meristem. Arguing from both mathematical analysis and computer simulations, we describe the natural behaviours of this class of models under various circumstances. In particular, we demonstrate the important dichotomy between sink- and source- driven systems, and show that both diffuse and canalized PIN distributions can be generated simultaneously in the same tissue, without model hybridization or variation of PIN-related parameters. This work is performed in the context of the shoot apical and floral meristems and is applicable to the construction of a unified PIN allocation model.

Suggested Citation

  • Michael Luke Walker & Etienne Farcot & Jan Traas & Christophe Godin, 2013. "The Flux-Based PIN Allocation Mechanism Can Generate Either Canalyzed or Diffuse Distribution Patterns Depending on Geometry and Boundary Conditions," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-16, January.
  • Handle: RePEc:plo:pone00:0054802
    DOI: 10.1371/journal.pone.0054802
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054802
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0054802&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0054802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Didier Reinhardt & Eva-Rachele Pesce & Pia Stieger & Therese Mandel & Kurt Baltensperger & Malcolm Bennett & Jan Traas & Jiří Friml & Cris Kuhlemeier, 2003. "Regulation of phyllotaxis by polar auxin transport," Nature, Nature, vol. 426(6964), pages 255-260, November.
    2. Szymon Stoma & Mikael Lucas & Jérôme Chopard & Marianne Schaedel & Jan Traas & Christophe Godin, 2008. "Flux-Based Transport Enhancement as a Plausible Unifying Mechanism for Auxin Transport in Meristem Development," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon van Mourik & Kerstin Kaufmann & Aalt D J van Dijk & Gerco C Angenent & Roeland M H Merks & Jaap Molenaar, 2012. "Simulation of Organ Patterning on the Floral Meristem Using a Polar Auxin Transport Model," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-9, January.
    2. Vincent Mirabet & Fabrice Besnard & Teva Vernoux & Arezki Boudaoud, 2012. "Noise and Robustness in Phyllotaxis," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-12, February.
    3. Shuyao Kong & Mingyuan Zhu & David Pan & Brendan Lane & Richard S. Smith & Adrienne H. K. Roeder, 2024. "Tradeoff between speed and robustness in primordium initiation mediated by auxin-CUC1 interaction," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Akiko Nakamasu & Hokuto Nakayama & Naomi Nakayama & Nobuhiko J Suematsu & Seisuke Kimura, 2014. "A Developmental Model for Branching Morphogenesis of Lake Cress Compound Leaf," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-7, November.
    5. Szymon Stoma & Mikael Lucas & Jérôme Chopard & Marianne Schaedel & Jan Traas & Christophe Godin, 2008. "Flux-Based Transport Enhancement as a Plausible Unifying Mechanism for Auxin Transport in Meristem Development," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-15, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0054802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.