IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0054201.html
   My bibliography  Save this article

A Method for Comparing Multivariate Time Series with Different Dimensions

Author

Listed:
  • Avraam Tapinos
  • Pedro Mendes

Abstract

In many situations it is desirable to compare dynamical systems based on their behavior. Similarity of behavior often implies similarity of internal mechanisms or dependency on common extrinsic factors. While there are widely used methods for comparing univariate time series, most dynamical systems are characterized by multivariate time series. Yet, comparison of multivariate time series has been limited to cases where they share a common dimensionality. A semi-metric is a distance function that has the properties of non-negativity, symmetry and reflexivity, but not sub-additivity. Here we develop a semi-metric – SMETS – that can be used for comparing groups of time series that may have different dimensions. To demonstrate its utility, the method is applied to dynamic models of biochemical networks and to portfolios of shares. The former is an example of a case where the dependencies between system variables are known, while in the latter the system is treated (and behaves) as a black box.

Suggested Citation

  • Avraam Tapinos & Pedro Mendes, 2013. "A Method for Comparing Multivariate Time Series with Different Dimensions," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
  • Handle: RePEc:plo:pone00:0054201
    DOI: 10.1371/journal.pone.0054201
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054201
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0054201&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0054201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Di Iorio & Umberto Triacca, 2022. "A comparison between VAR processes jointly modeling GDP and Unemployment rate in France and Germany," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 617-635, September.
    2. Michela Borghesi, 2020. "Metodi statistici per il confronto di serie storiche con applicazioni finanziarie," Working Papers 2020049, University of Ferrara, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0054201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.