Author
Listed:
- Julia Salzman
- Daniel M Klass
- Patrick O Brown
Abstract
Background: High throughput molecular-interaction studies using immunoprecipitations (IP) or affinity purifications are powerful and widely used in biology research. One of many important applications of this method is to identify the set of RNAs that interact with a particular RNA-binding protein (RBP). Here, the unique statistical challenge presented is to delineate a specific set of RNAs that are enriched in one sample relative to another, typically a specific IP compared to a non-specific control to model background. The choice of normalization procedure critically impacts the number of RNAs that will be identified as interacting with an RBP at a given significance threshold – yet existing normalization methods make assumptions that are often fundamentally inaccurate when applied to IP enrichment data. Methods: In this paper, we present a new normalization methodology that is specifically designed for identifying enriched RNA or DNA sequences in an IP. The normalization (called adaptive or AD normalization) uses a basic model of the IP experiment and is not a variant of mean, quantile, or other methodology previously proposed. The approach is evaluated statistically and tested with simulated and empirical data. Results and Conclusions: The adaptive (AD) normalization method results in a greatly increased range in the number of enriched RNAs identified, fewer false positives, and overall better concordance with independent biological evidence, for the RBPs we analyzed, compared to median normalization. The approach is also applicable to the study of pairwise RNA, DNA and protein interactions such as the analysis of transcription factors via chromatin immunoprecipitation (ChIP) or any other experiments where samples from two conditions, one of which contains an enriched subset of the other, are studied.
Suggested Citation
Julia Salzman & Daniel M Klass & Patrick O Brown, 2013.
"Improved Discovery of Molecular Interactions in Genome-Scale Data with Adaptive Model-Based Normalization,"
PLOS ONE, Public Library of Science, vol. 8(1), pages 1-10, January.
Handle:
RePEc:plo:pone00:0053930
DOI: 10.1371/journal.pone.0053930
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0053930. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.