IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0051558.html
   My bibliography  Save this article

The Network Structure of Human Personality According to the NEO-PI-R: Matching Network Community Structure to Factor Structure

Author

Listed:
  • Rutger Goekoop
  • Jaap G Goekoop
  • H Steven Scholte

Abstract

Introduction: Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. Aim: To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). Methods: 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. Results: At facet level, NCS showed a best match (96.2%) with a ‘confirmatory’ 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with ‘confirmatory’ 5-FS and ‘exploratory’ 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. Conclusion: We present the first optimized network graph of personality traits according to the NEO-PI-R: a ‘Personality Web’. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.

Suggested Citation

  • Rutger Goekoop & Jaap G Goekoop & H Steven Scholte, 2012. "The Network Structure of Human Personality According to the NEO-PI-R: Matching Network Community Structure to Factor Structure," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-18, December.
  • Handle: RePEc:plo:pone00:0051558
    DOI: 10.1371/journal.pone.0051558
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0051558
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0051558&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0051558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rutger Goekoop & Jaap G Goekoop, 2014. "A Network View on Psychiatric Disorders: Network Clusters of Symptoms as Elementary Syndromes of Psychopathology," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-47, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0051558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.