Author
Listed:
- Allen Cheung
- Lex Hiby
- Ajay Narendra
Abstract
Home is a special location for many animals, offering shelter from the elements, protection from predation, and a common place for gathering of the same species. Not surprisingly, many species have evolved efficient, robust homing strategies, which are used as part of each and every foraging journey. A basic strategy used by most animals is to take the shortest possible route home by accruing the net distances and directions travelled during foraging, a strategy well known as path integration. This strategy is part of the navigation toolbox of ants occupying different landscapes. However, when there is a visual discrepancy between test and training conditions, the distance travelled by animals relying on the path integrator varies dramatically between species: from 90% of the home vector to an absolute distance of only 50 cm. We here ask what the theoretically optimal balance between PI-driven and landmark-driven navigation should be. In combination with well-established results from optimal search theory, we show analytically that this fractional use of the home vector is an optimal homing strategy under a variety of circumstances. Assuming there is a familiar route that an ant recognizes, theoretically optimal search should always begin at some fraction of the home vector, depending on the region of familiarity. These results are shown to be largely independent of the search algorithm used. Ant species from different habitats appear to have optimized their navigation strategy based on the availability and nature of navigational information content in their environment.
Suggested Citation
Allen Cheung & Lex Hiby & Ajay Narendra, 2012.
"Ant Navigation: Fractional Use of the Home Vector,"
PLOS ONE, Public Library of Science, vol. 7(11), pages 1-10, November.
Handle:
RePEc:plo:pone00:0050451
DOI: 10.1371/journal.pone.0050451
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0050451. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.